
Introduction to Bash

The Shell and Shebang
• Shell – program that interfaces with operating system

• Bash – is the default shell, or interpreter, for most Linux systems (such as
Proteus)

• Bash uses a wide array of commands to interface with the interpreter

• These commands can also be used in a script: my_script.sh

• A shebang is the first line of a script that tells the OS what interpreter to
use.

 Bash shebang - #!/bin/bash

Common Commands
• cd [directory]

• ls [directory]

• mkdir [directory]

• rm [file]
 rm –rf [directory]

• mv [file] [location]

• cp [file] [location]

• less [file]

• man [command]

Writing Bash Scripts
• On Proteus

 nano

 vim

 emacs

• Use your personal computer

 Notepad++

 Sublime

 Visual Studio

• May need to use dos2unix if coming from Windows

Absolute vs Relative Pathing
• An absolute path is the full path from the root directory (/) to the current

directory

 pwd will display your current directory path

 /mnt/HA/groups/testGrp

• A relative path is the path from your directory to another directory

 . is a reference to the current directory

 .. is a reference to the parent directory

 ../../test/foo

Variables
• VAR=test

 No space next to =

 Case sensitive

• $VAR

 Access with $

• Environment Variables are system wide variables

 $SHELL, $HOST, $USER

 Type “env” or “printenv” in terminal to see all

 “printenv VAR” will display the value of $VAR

• export VAR

• Variables you create exist only for the session, set them in .bashrc in order
for them to persist between sessions

Array Variables
• VAR[index]=test

• VAR=(val1 val2 val3)

• Zero based index (i.e. VAR[1] -> val2)

• Use curly braces { } to reference more than the first index

 echo ${VAR[*]} -> val1 val2 val3

• To delete array variables use the “unset” command

 unset VAR

 unset VAR[1]

Command Redirection
• >

 Sends output from a command to file

• <

 Sends input into a command

• |

 “pipe”

 Sends command output to another command

• ()

 Subshell

• $()

 Command substitution

Flow Control
• if

if [condition]

then

command

else

command

fi

• for

for VAR in {1..5}

do

command

done

Flow Control
• while

while [condition]

do

command

done

• seq FIRST INCREMENT LAST
 seq 2 5 20

 2

 7

 12

 17

 seq –f “FORMAT” -> display in format

 seq –s “ ” -> display as a string

 seq –w -> pad with leading zeros

Functions
function test_func{

command

}

test_func

• For input parameters:

• $0, $1, $2, etc. for each argument

• $0 – name of shell script

Testing
• test

• []

• [[]]

 More functionality than []

 No need to quote variables

 &&

 ||

 =~ (match)

Arithmetic
• Integer based

 3 / 2 == 1

• $(()) - arithmetic expansion

 $((5 * 4))

• expr

 Expressions may need escape characters

 expr 2 + 3

 expr 5 * 4

Let's Try It!

