
Bash
FITSUM ALEBACHEW

Kernels

A kernel is the heart and core of an operating system:

• has control over everything in the system

• responsible for facilitating interactions between hardware and software
components

• also responsible for disk, memory and task management

A common kernel used by many operating systems is the Linux kernel.

2

Shells

A shell is the program that interacts with the kernel:

• allows users and user applications to communicate with the OS

• uses either a GUI or a CLI (or both!)

There are many Unix/Linux shells:

• Bourne shell (bsh)

• C shell (csh)

• Korn shell (ksh)

• Bourne Again shell (bash)

3

Linux Filesystem 4

https://linuxfoundation.org/blog/classic-sysadmin-the-linux-filesystem-explained/

https://linuxfoundation.org/blog/classic-sysadmin-the-linux-filesystem-explained/

Navigating the Filesystem

In Linux, everything is a file. Therefore, it is essential to know how to
navigate the filesystem:

• pwd – print working directory

• cd [path] – change directory

• . : current directory

• .. : previous directory

• ~ : home directory (usually /home/username)

• ls – view files in current directory (or supply path to directory)

• -l : include file details

• -a : show hidden files

5

Files and Folders

• mkdir [path] – create a new directory

• touch [path] – create a new file

• find -name [query] – find a file

• cp [source] [destination] – copy a file (-r for folders)

• mv [source] [destination] – move a file (-r for folders)

• used to rename files/folders

• rm [path] – delete file permanently

• -rf: recursively delete without warnings! (for folders)

• rm -rf /* : one line killer (means delete EVERYTHING)

6

Viewing Files Contents

• cat – prints the contents of a file

• head/tail – print beginning/end of file respectively

• -n [number]: print specific number of lines

• less – scrollable view of file

• wc – prints the length of a file in lines, words and characters

• -w, -l, -c: only print word/line/byte count respectively

More options and functionality can be found in manual pages!

7

Important Commands

• grep – finds and prints lines of a file matching a pattern

• grep [pattern] [path]

• -v option to negate

• -i for case insensitive

• uses regex as pattern syntax

• . : matches any character once

• * : matches the previous character 0-any number of times

• ^: start of line

• $: end of line

8

Important Commands(cont.)

• cut [path] – finds and prints selective parts of each line of a file

• -d “delimiter” -f [range]: print specific fields

• alias [new-command]=[definition] – create your own shortcut commands

• no space around ‘=‘

• Ex: alias la=‘ls –al’

• sort [path] – sorts the contents of a file

• -n : numeric

• -r : reverse

• -k [n]: sort by field

• du [path] – show disk usage

• top – show CPU/memory utilization

9

Filename Expansion

Pathnames containing *, ? or [] are called wildcard patterns:

• * : matches any string (including empty string)

• good for files starting/ending with a pattern

• ? : matches any single character

• [] : matches characters in brackets (start with ^ to negate)

• [abce], [a-ce] would match a, b, c, or e

• [^abce], [^a-ce] would match any character except a, b, c, or e

10

Output Redirection and Piping

Redirect the output of a command to a file with:

• [command] > [path]

• use >> to append

• use 2> for error redirection (&> for both standard and error)

• Ex: java test > output.log 2> error.log

Pipe the output of a command to another command with:

• [cmd1] | [cmd2]

• Ex: du -s * | sort -nr | head -n 5 (prints the 5 biggest files/folders in directory)

11

Output Redirection and Piping 12

Variables

Variables can be defined in the shell as [name]=[value]

• no space around ‘=‘

• can be a number, character or string

• Ex: a=10, first_name=Alex

When using the value of variables, prepend with ‘$’

13

Double quotes preserve the special
character ‘$’. Use single quotes to treat
as regular character

Conditional Statements

• && and ||

• [cmd1] && [cmd2] : cmd2 is executed only if cmd1 succeeds

• [cmd1] || [cmd2] : cmd2 is executed only if cmd1 fails

• if statements

• if [test]; then [cmd1] ; elif [test]; then [cmd2] ; else [cmd3] ; fi

• red parts required

• test can be:

• a command/series of commands

• ‘’[[*expr]]”, spaces required

14

*Bash conditional expressions: https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Bash-Conditional-Expressions

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Bash-Conditional-Expressions

Conditional Statements 15

Loops 16

• for loops

• for [var] in [list]; do [cmd]; done

• while loops

• while [test]; do [cmd]; done

Bash Scripts

They are files with a list of bash commands

• should be an executable - (chmod +x [path])

• first line should be ‘#!/bin/bash’

• variables defined inside scripts are local

17

Questions?

• Feel free to attend my office hours every weekday 2 - 3 pm (any
changes will be reflected on the URCF wiki main page):
https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Main_Page#Talks_and
_Workshops

18

https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Main_Page#Talks_and_Workshops

