Qﬁ‘ Bash

Drexel FITSUM ALEBACHEW

UNIVERSITY

Kernels

A kernel is the heart and core of an operating system:

* has control over everything in the system

* responsible for facilitating interactions between hardware and software
components

* also responsible for disk, memory and task management

A common kernel used by many operating systems is the Linux kernel.

Bash

Shells

A shell is the program that interacts with the kernel:
* allows users and user applications to communicate with the OS

* uses either a GUI or a CLI (or both!)
There are many Unix/Linux shells:

* Bourne shell (bsh)

* Cshell (csh)

e Korn shell (ksh)

* Bourne Again shell (bash)

Bash

/bin

bash
cat
chmod
cp
date
echo
grep
gunzip
gzip
hostname
kill
less

Jetc

crontab
cups

fonts

fstab
host.conf
hostname
hosts
hosts.allow
hosts.deny
init

init.d

issue
machine-id
mtab
mtools.conf
nanorc
networks

Linux Filesystem

/shin

fdisk
fsck
getty
halt
ifconfig
init
mkfs
mkswap
reboot
route

/usr/bin

/usr/include

/usr/lib

/usr/local

/var/cache

/var/lib

/var/lock

/var/log

/var/opt

fusr/local/bin

/usr/local/lib

fusr/local/man /var/spool
/usr/local/sbin

::;zolv.conf /usr/local/share

securetty /var/spool/cron
services /usr/share /var/spool/cups
shells /var/spool/mail

timezone /var/tmp

tar /usr/share/man
touch

umount
uname

passwd
profile
protocols

Bash

https://linuxfoundation.org/blog/classic-sysadmin-the-linux-filesystem-explained/

Navigating the Filesystem

In Linux, everything is a file. Therefore, it is essential to know how to
navigate the filesystem:

* pwd — print working directory
* cd [path] — change directory
* .:current directory

* ..:previous directory

* ~:home directory (usually /nome/username)

* |s—view files in current directory (or supply path to directory)
* -l :include file details

* -a:show hidden files

Bash

Files and Folders

* mkdir [path] — create a new directory

* touch [path] — create a new file

* find -name [query] — find a file

* cp [source] [destination] — copy a file (-r for folders)

* mv [source] [destination] — move a file (-r for folders)

e used to rename files/folders

* rm [path] — delete file permanently

* -rf: recursively delete without warnings! (for folders)

: one line killer (means delete)

Bash

Viewing Files Contents

* cat — prints the contents of a file

* head/tail — print beginning/end of file respectively

* -n [number]: print specific number of lines

* |ess —scrollable view of file

* wc — prints the length of a file in lines, words and characters

* -w, -l, -c: only print word/line/byte count respectively

More options and functionality can be found in manual pages!

Bash

Important Commands

* grep — finds and prints lines of a file matching a pattern
e grep [pattern] [path]
* -v option to negate
* -ifor case insensitive
* uses regex as pattern syntax
* .:matches any character once

* *: matches the previous character 0-any number of times
e A:start of line

* S:end of line

Bash

Important Commands(cont.)

* cut [path] —finds and prints selective parts of each line of a file
* -d “delimiter” -f [range]: print specific fields

* alias [new-command]=[definition] — create your own shortcut commands
* no space around ‘=’
* Ex: alias la=‘ls —al’

* sort [path] — sorts the contents of a file
°* -n:numeric
* -r.reverse
e -k [n]: sort by field

* du [path] — show disk usage

* top —show CPU/memory utilization

Bash

Filename Expansion

Pathnames containing *, ? or [] are called wildcard patterns:

e *:matches any string (including empty string)
» good for files starting/ending with a pattern
* ?:matches any single character
* []: matches characters in brackets (start with A to negate)

* [abce], [a-ce] would match a, b, c, or e

e ["abce], [*a-ce] would match any character except a, b, ¢, or e

Bash

10

Output Redirection and Piping

Redirect the output of a command to a file with:
* [command] > [path]
* use >>to append

e use 2> for error redirection (&> for both standard and error)

* Ex: java test > output.log 2> error.log

Pipe the output of a command to another command with:
* [ecmdl] | [emd2]

* Ex:du-s * | sort-nr | head -n 5 (prints the 5 biggest files/folders in directory)

Bash

11

Output Redirection and Piping

[picotteeol] ~$% echo Hello World > file.txt
[picotte@@l] ~$ cat file.txt

Hello World

[picotte@@l] ~$% echo Second Line »>> file.txt
[picotteool] ~$% cat file.txt

Hello World
Second Line
[picotteool]

t

s 1

Print 5 Largest Files (NOT Folders)
[picottee@l] demos$ 1ls -1R | grep ~- | sort -nrk5 | head -n5
-rw-r--r-- 1 fad496 vtune 166492663 Apr 5 12:29 Barnsley-Fern-Out.png

-rwxr-xr-x 1 fa496 vtune 83791872 Apr 25 12:49 lolcow_latest.sif

-rw-r--r-- 1 fad4se vtune 47885452 Apr 26 10:27 variables.data-00000-o0f-00001
-rw-r--r-- 1 fa496 vtune 2952882 Jun 13 ©9:51 libhpl.a

-rwxr-xr-x 1 fa496 vtune 1104640 Jun 13 ©9:51 xhpl

[picotteeol] demos$ I

Bash

Variables

Variables can be defined in the shell as [name]=[value]
* no space around ‘=*
* can be a number, character or string
* Ex:a=10, first_name=Alex

When using the value of variables, prepend with ‘S’

$ a=10
$ echo a

a
$ echo $a Double quotes preserve the special

10 (&7 .
character ‘S’. Use single quotes to treat
$ echo "Max $a feet" S sl€q

Max 10 feet as regular character

$ echo '"Max $a feet'
Max $a feet
$ o

Bash

Conditional Statements

* &&and ||

* [cmdl] && [cmd2] : cmd?2 is executed only if cmd1 succeeds

* [cmd1] || [emd2] : cmd2 is executed only if cmd1 fails

 if statements
o elif [test]; then [cmd2] ; else [cmd3] ;

* red parts required
* test can be:
¢ acommand/series of commands

* “[[*expr1]”, spaces required

*Bash conditional expressions: https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Bash-Conditional-Expressions

Bash

14

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Bash-Conditional-Expressions

Conditional Statements

[picotteool] ~$ cat file.txt

Hello World
[picotteeol] ~$ grep Hi file.txt && echo yes || echo no

no
[picotteeol] ~$ grep Hello file.txt & echo yes || echo no

Hello World
yes

[picotteool] ~$ if 1s |grep file.txt > /dev/null; then echo 'File found!!'; else echo 'File NOT found!!'

File NOT found!!

[picotteeol] ~$ touch file.txt
[picotteeol] ~$ if 1ls |grep file.txt > /dev/null; then echo 'File found!!'; else echo 'File NOT found!!'’

File found!!
[picotteool] ~$ I

Bash

st

g 1

15

Loops e

[picotte@@l] ~$ for a in {@..10..2}; do echo "Number is $a"; done

: fC)r IC)()F)S Number is ©
: : Number is 2
* for [var] in [list]; do [cmd]; done number is 4
Number is 6
* while loops Alkbaiis 15

* while [test]; do [cmd]; done

[picotteool] ~$ a=10

[picotteo@l] ~% while [[$a -ge @]]; do echo "Number is $a"; let a=a-2; done
Number is 10

Number 1is
Number is
Number 1is
Number is
Number is ©
[picotteool] ~% I

N RO

Bash

Bash Scripts

They are files with a list of bash commands

* should be an executable - (chmod +x [path])
 first line should be ‘#!/bin/bash’

* variables defined inside scripts are local

echo Hello World

Bash

17

Questions?

* Feel free to attend my office hours every weekday 2 - 3 pm (any
changes will be reflected on the URCF wiki main page):

Bash

18

https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Main_Page#Talks_and_Workshops

