
GETTING STARTED WITH 
GIT AND GITHUB

How I learned to stop worrying and love version control

David Chin, Drexel URCF



• Does you source code directory/folder look like this?

• my_program-4Feb2022.py

• my_program-14Mar2022.py

• my_program.py

• my_program-algorithm1.py

• my_program-algorithm2.py

• Sidebar

• If you want to use dates, use YYYYMMDD or YYYY-
MM-DDwhich can be sorted numerically, e.g. 
2022-02-04, 2022-03-14

• Fine for a very small number of files

• Does not scale

• Not sustainable, i.e. when you come back to your 
code some months/years later

• What is an effective an efficient way of keeping 
track of changes?

MOTIVATION



• By the end of this talk, you should be able to:

• Explain why version control is useful

• Create a new GitHub repository

• Use a simple (branchless) Git workflow

• Edit

• Add (Stage)

• Commit

• Tag

• Push

• Use a simple branching Git workflow

• Create branch

• Switch branch

• Merge changes

• Recover a previous state of code

WHAT YOU 
WILL LEARN



VERSION 
CONTROL

• a.k.a. revision control, source control, or source 
code management (SCM)

• Class of systems responsible for managing 
changes to computer programs, documents, 
large web sites, or other collections of 
information

• Two major classes

• Centralized

• One central repository holds the “truth”

• Only one person modifies one part of 
the code at a time

• Distributed

• All repositories are equal

• Repositories can be synced to each 
other



WHAT IT CAN 
DO FOR YOU

• Allows for experimenting with new sections of 
code while enabling reversion to older known 
working state

• Allows for collaboration with careful rules about 
“clobbering” (overwriting) each other’s work

• Allows meaningful version numbers

• Not just for computer code: I used version 
control on my dissertation



GIT

• Originally written by Linus Torvalds (author of 
Linux) in 2005

• Used to manage Linux kernel source code: 
~25 million of lines of code, thousands of 
developers, all making modifications at the 
same time

• Can be complex but only small subset of 
commands needed for useful work



GITHUB

• While git is distributed, it is helpful to have a 
conceptually central repository

• For a project with multiple developers in different 
locations, their PCs may not be able to 
communicated directly with each other to sync 
changes. GitHub serves as an intermediary.

• Students get some “pro” features for free

• Provides own GitHub CLI tool called “gh”

• We will not use it here



ALTERNATIVES 
TO GITHUB

All these work with Git:

• GitLab

• BitBucket

• GitBucket

• AWS CodeCommit

• SourceForge

• Google Cloud Source Repositories

• Phabricator

• Gitea (self-hosted)

• Apache Allura

• Launchpad (by Canonical, distributors of Ubuntu 
Linux)

• Ref: https://www.geeksforgeeks.org/top-10-
github-alternatives-that-you-can-consider

https://www.geeksforgeeks.org/top-10-github-alternatives-that-you-can-consider


SIGN UP FOR A 
GITHUB ACCOUNT
https://education.github.com/disco
unt_requests/student_application

https://education.github.com/discount_requests/student_application


SSH KEYS
https://docs.github.com/en/authent
ication/connecting-to-github-with-
ssh

https://docs.github.com/en/authentication/connecting-to-github-with-ssh


SSH KEYS

• Allows passwordless connection with GitHub

• Generate key:

• ssh-keygen -t ed25519 -C 
your_email@example.com

• DO NOT USE AN EMPTY PASSPHRASE

• Start the SSH agent:

• eval "$(ssh-agent -s)"

• Add your key to the agent:

• ssh-add ~/.ssh/id_ed25519

• Add the public key to your GitHub account:

• cat ~/.ssh/id_ed25519.pub

• Test connection to GitHub:

• ssh -T git@github.com

• Ref: https://docs.github.com/en/authentication/conne
cting-to-github-with-ssh

mailto:your_email@example.com
https://docs.github.com/en/authentication/connecting-to-github-with-ssh


CREATE A NEW 
REPO

• “repo” = repository

• Go to your repositories page:

• https://github.com/yourname

• Click the “New” button



IMPORT 
EXISTING 

CODE TO 
GITHUB

• Create a new repo at GitHub

• On your PC, move existing code directory to a 
different name, e.g. myproject_orig

• Clone the repo to your PC

• Copy all the original code to the cloned repo

• Add/Stage, commit, and push all the original 
files to GitHub

• Optionally, save your “myproject_orig” to an 
archive location



GIT 
CONFIGURATION

• Show current configuration

• git config --global --list

• Modify some configurations:

• git config --global user.name "Sam Noone"

• git config --global 
user.email abc123@drexel.edu

• git config --global core.editor nano

• Alternatively, change your environment 
variable VISUAL and/or EDITOR to 
“nano” or whatever editor you prefer

• git config --global init.defaultbranch main



CLONE THE 
REPO

• Copy the “ssh” repo link

• In terminal:

• git clone git@github.com:myname/myrepo



DIAGRAM OF 
STATE OF 

CODE

• Each circle represents a “commit”



CREATE A NEW 
FILE

• Type (or use editor of choice):

• nano hello.py

• Edit

• Save

Contents of file:

#!/usr/bin/env python3

print("hello, world!")



ADD/STAGE 
THE FILE

• Type:

• git add hello.py



COMMIT THE 
CHANGE

• Type:

• git commit

• An editor will launch asking for a commit 
message

• Type a brief description of the changes you 
made

• Save the commit message (file) and quit the 
editor

• N.B. you are committing this change to your 
local repository

• Check the repo on GitHub

• Notice that the file is not there

• DEMO



PUSH THE 
CHANGE 

UPSTREAM

• Type

• git push –u

• Check the repo on GitHub

• Notice that the file is now there, with the commit 
message shown

• DEMO



MODIFY AN 
EXISTING FILE

• Now, edit your file and make some changes

• Save the file

• See a summary of what you have changed:

• git diff

• Then: add, commit, push –u

• DEMO



SUMMARY SO 
FAR

1. Add/Stage file(s) – git add

2. Commit file(s) – git commit

3. Push upstream – git push -u

4. Make changes

5. Go to 1

Aside: to make shell have git 
decorations https://ohmybash.nntoan.com

https://ohmybash.nntoan.com


UNDO
• Undo an edit which has not been 

staged/added

• git restore .

• git restore path/to/file



UNDO A 
COMMIT

• Oops. How to roll back a bad commit?

• Before it has been pushed upstream

• Reset to one commit before HEAD:

• Retain changes: git reset --soft HEAD~1

• Discard changes: git reset --hard HEAD~1

• Hazard of only working with a single branch

• DEMO



BASIC BRANCH 
AND MERGE

• How to make modular changes to code 
without breaking what is already working

• Including fixing bugs

• How to collaborate without stepping on each 
other’s toes

• How to get back to a previous working version

• You do not need branch and merge for a very 
basic workflow, 
e.g., https://uidaholib.github.io/get-
git/3workflow.html

• BUT very useful for “unbreaking” things

• Especially if multiple people are working on the 
same code

• More docs: https://git-
scm.com/book/en/v2/Git-Branching-Basic-
Branching-and-Merging

https://uidaholib.github.io/get-git/3workflow.html
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging


BASIC BRANCH 
AND MERGE



BASIC BRANCH 
AND MERGE

• DEMO

• Create a new branch and switch to it

• Work on new branch

• Compare with main branch

• Commit new branch

• Merge new branch into main



BASIC BRANCH 
AND MERGE 

DEMO

• git checkout -b new-feature

• List all branches
• git branch

• Edit new file goodbye.py

• git add goodbye.py

• git commit

• git push –u
• Read error message, and follow directions

• git push --set-upstream origin new-feature

• Go to GitHub
• Read the message



BASIC BRANCH 
AND MERGE 

DEMO

• Merge the change into main
• git checkout main

• git pull origin main

• git merge new-feature

• git push origin main

• Delete the "new-feature" branch

• Use GitHub on web

• Command line

• git branch –d new-feature

• git branch (to check)

• Push the change (branch delete) to GitHub

• git push --delete origin new-feature

• Check on GitHub



SUMMARY SO 
FAR

• To fix a bug, or add a new feature

• Create a new branch and check it out (a.k.a. 
switch to the new branch)

• Make edits in the new branch and commit as 
usual

• Once satisfied (i.e. bug fixed, or feature fully 
implemented)

• Merge branch back into main

• Optionally, delete the bug fix/feature branch



TAGGING

• For major or minor “releases”

• Known working versions

• Ref: https://git-scm.com/book/en/v2/Git-
Basics-Tagging

https://git-scm.com/book/en/v2/Git-Basics-Tagging


TAGGING 
DEMO

• We now have first working version of our 
application

• Create an annotated tag
• git tag –a v0.1 -m "First working version 0.1"

• See all tags
• git tag

• Show annotations
• git show v0.1

• Push tags to GitHub
• git push origin –tags

• Look on GitHub
• N.B. you can download a zip or tar.gz archive file

• Branch, add new feature, merge, tag
• Use 

gist https://gist.github.com/prehensilecode/c18e
eb5876c6c8b64ec681ad691e6910

• Switch to old tag
• git checkout v0.1

https://gist.github.com/prehensilecode/c18eeb5876c6c8b64ec681ad691e6910


SUMMARY SO 
FAR

• Tag to mark significant milestones, e.g. releases

• Tags should be applied only to fully working code 
(barring any undiscovered bugs)

• Tags allow you to “rewind” to a previously 
working state

• If bugs are too major to just edit to fix, you can 
discard any changes made since a previous tag. 
E.g. v1.3 is badly broken, rewind to v1.2 by: 

• git checkout tags/v1.2



WHAT GITHUB 
ADDS TO GIT

• Not just a remote Git repository

• Issue tracking
• Bugs

• Feature requests

• Collaboration
• Pull requests – others (may or may not be in 

team) can contribute code, and request that the 
owner of the repo pull the change into the 
originating repo

• Continuous Integration (CI)
• is the practice of merging all developers' working 

copies to a shared mainline several times a day

• Use GitHub Actions:
• https://docs.github.com/en/actions

• https://docs.github.com/en/actions/learn-
github-actions/understanding-github-actions

• e.g. run a test suite (on GitHub servers) whenever a 
change is pushed

https://docs.github.com/en/actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions


GITHUB 
CLIENTS

• GitHub Desktop – GUI Application

• https://desktop.github.com/

• Available for macOS and Windows only

• GitHub Command Line Interface

• https://cli.github.com/

• Access GitHub functionality from the command 
line (I.e. not just another git)

http://Ghttps:/desktop.github.com/
https://cli.github.com/


SUGGESTED 
WORKFLOW 

FOR GETTING 
CODE TO 

PICOTTE

• Do no (or minimal) editing on Picotte

• Create a GitHub repo (private or public)

• Edit code on your personal computer

• Push changes to GitHub

• Go to Picotte

• Checkout the repo, and pull any updates, and 
run code

• Rinse and repeat



SUMMARY

• Basic source code management with git

• Edit, stage (add), commit, push

• Pull

• Branch and merge

• Tag

• GitHub features

• Workflow suggestion

• Importing existing code to GitHub



EDITORS

• Code editors provide features to aid in 
programming

• Syntax highlighting

• Error checking

• Etc.

• Extensible

• e.g. Run a Jupyter notebook in a VS Code (or 
Emacs) tab

• Support Git and GitHub



INTEGRATED 
DEVELOPMENT 

ENVIRONMENTS 
(IDES)

• UI to manage entire software projects

• Build and test system

• Debugger

• Tracing

• Version control

• Editors now have some IDE features (see 
previous slide)

• E.g.

• Eclipse https://www.eclipse.org/ide/

• NetBeans https://netbeans.apache.org/downloa
d/index.html

• macOS XCode

https://www.eclipse.org/ide/
https://netbeans.apache.org/download/index.html


EDITOR 
INTEGRATION

• Using a separate Git/GitHub application or 
command line is a little annoying

• Switch from editing to GH Desktop or terminal to 
perform Git operations

• Editors for programming almost all have 
integration with Git and GitHub

• Indicators while editing to show state of code

• Perform git operations: add/stage, commit, push, 
tag, etc.

• Perform GitHub operations: refer to an issue, etc.



EDITOR 
INTEGRATION: 

VS CODE

• VisualStudio Code

• Download: https://code.visualstudio.com/

• Free of charge editor from Microsoft

• Runs on Windows, macOS, and Linux

• Has Git and GitHub integration

• Git (and other SCM) support built in

• But there are other extensions which offer 
convenience functionality

• See: https://code.visualstudio.com/docs/edito
r/versioncontrol

• Extensions to install:

• GitLens

• GitHub Pull Requests and Issues

• Etc.

• Sign in to GitHub

https://code.visualstudio.com/
https://code.visualstudio.com/docs/editor/versioncontrol




VS CODE WITH GIT DEMO



EDITOR 
INTEGRATION: 

EMACS

• Emacs is not just an editor

• It is an entire user interface that can replace your 
desktop, including shell, email, web browser, 
calendar, ipython, etc.

• Because it is a machine which runs apps written 
in the Emacs Lisp language

• The editor is just the default app running

• Runs both in GUI and in the terminal

• Emacs vs Vi(m) is archaic

• Power users use Emacs with Spacemacs and Vi 
key bindings

• Spacemacs

• No funny control sequences, only SPACE

• Discoverable: possible completions shown every 
time so you can learn as you go

• GOAL: don’t move hands from keyboard



• vi is a modal editor

• insert mode - where typed text becomes part 
of the document

• command mode - where keystrokes are 
interpreted as commands that control the 
edit session

• Command mode allows powerful operations

• Repetitions

• Search and replace

• Etc.

WHAT IS VI



EMACS WITH GIT DEMO



• Git book: https://git-scm.com/book/en/v2
• About version control: https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

• Branch & merge: https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

• GitHub quick start: https://docs.github.com/en/get-started/quickstart

• Simple git workflows:
• https://uidaholib.github.io/get-git/3workflow.html
• https://www.atlassian.com/git/articles/simple-git-workflow-is-simple

• Another branch & merge tutorial: https://www.atlassian.com/git/tutorials/using-branches

• GitHub CLI (gh): https://cli.github.com

• Oh My Zsh: https://ohmyz.sh

• Oh My Bash: https://ohmybash.nntoan.com

• Visual Studio Code: https://code.visualstudio.com/

• Sublime Text: https://www.sublimetext.com/

• Spacemacs: https://www.spacemacs.org

REFERENCES

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://docs.github.com/en/get-started/quickstart
https://uidaholib.github.io/get-git/3workflow.html
https://www.atlassian.com/git/articles/simple-git-workflow-is-simple
https://www.atlassian.com/git/tutorials/using-branches
https://cli.github.com
https://ohmyz.sh/
https://ohmybash.nntoan.com/
https://code.visualstudio.com/
https://www.sublimetext.com/
https://www.spacemacs.org

