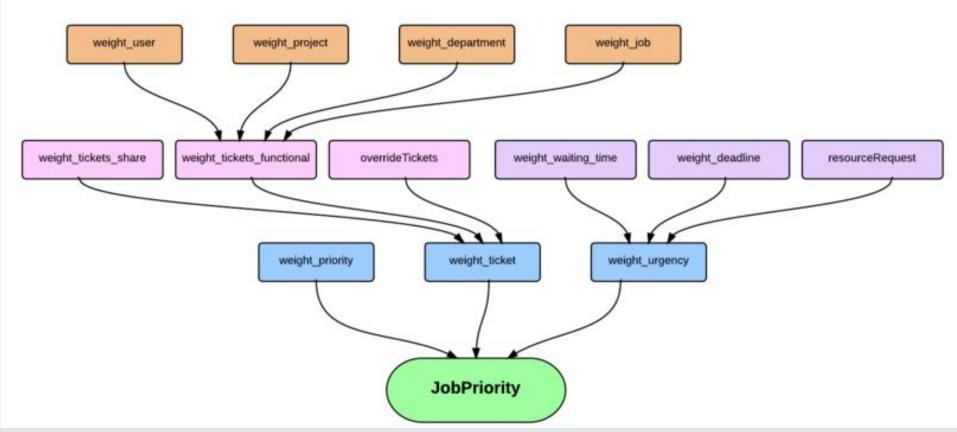


Thomas G. Coard & Bahrad A. Sokhansanj

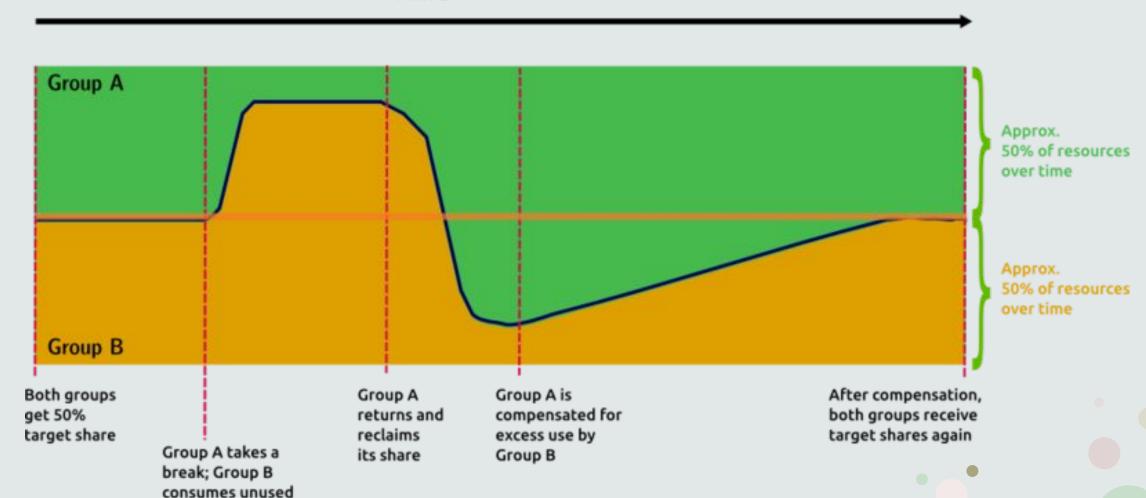
November 18, 2021


tgc37@drexel.edu

bas44@drexel.edu

Job Scheduling in Picotte

- 1. Job Selection every job in the pending job list is assigned a priority (a scalar value), and the entire list is sorted in order of priority, highest priority first.
- 2. Job Scheduling this is where a job is assigned to a set of free resources. The system attempts to find suitable resources for the jobs in priority sequence.


The diagram below shows all the parameters which go into the calculation of a job's priority.

Job Scheduling in Picotte

resources

Time

Picotte Usage Rates

Compute

Compute resource rate: \$0.0123 per SU

Resources:

standard compute nodes have 48 cores per node; there are 74 nodes in total

big memory nodes have 1.5 TiB of memory (RAM) per node; there are 2 nodes in total

. GPU nodes have 4 GPU devices (cards) per node; there are 12 nodes in total

Picotte Compute Rates					
Resource type	Slurm partition	SU per unit resource			
Std. compute	def	1 per core-hour			
Big memory	bm	68 per TiB-hour			
GPU	gpu	43 per GPU device-hour			

Example: Using all 4 GPU devices on a GPU node for 1 hour consumes 172 SU, for a total charge of \$0.0123 * 172 = \$2.12

NOTE: all resource usage above is computed based on resources reserved for the actual lifetime of a job. E.g. a job requests 4 GPU-hours. The billable amount is 4 GPU-hours = 172 SU. This is because those resources are made unavailable to others.

Persistent Storage

Storage rate: 1.48 SU per TiB-hour 1081 SU per TiB-month

To compare to Proteus (see above), this is equivalent to \$3.06 per TiB-week \$13.30 per TiB-month ~= \$3.32 per TiB-week.

Example: storing 5 TiB of data for 1 month \rightarrow \$0.0123 * 1081 * 5 = \$66.48

Understanding your jobs

- Memory?
 - MaxRSS (Resident Set Size) is what matters (maximum memory usage by process)
 - Virtual Memory (VM) doesn't contribute to job limit
- Storage Space?
- Run Time?
 - Don't run large volumes of short jobs (overhead on scheduler)
 - Do run a few iterations of an interative job (e.g., machine learning, run a few epochs) to estimate run-time
 - Use verbose outputs, e.g., verbose = True for sklearn, verbose = 1 or 2 for Tensorflow
- Sub-processes?
- sacct displays accounting data for all jobs and job steps in the Slurm job accounting log or Slurm database
 - https://slurm.schedmd.com/sacct.html
 - Also, sstat (running jobs), seff, sreport (all information at the man pages above)

Job Scheduling & Memory Requests

Name	State	Time	CPU	Memory
XXXXX000	COMPLETED	00:01:53	97.3%	14.0%
XXXXXX001	COMPLETED	00:02:19	84.2%	14.0%
XXXXX002	COMPLETED	00:06:33	28.2%	14.0%
XXXXX003	COMPLETED	00:04:59	39.1%	14.0%
XXXXX004	COMPLETED	00:02:31	97.4%	9.2%
XXXXX005	COMPLETED	00:02:38	98.1%	9.1%
XXXXXX006	COMPLETED	00:02:24	97.2%	9.1%
XXXXX007	COMPLETED	00:02:40	98.1%	9.0%
XXXXX008	COMPLETED	00:02:39	96.2%	9.1%
XXXXX009	COMPLETED	00:02:45	96.4%	9.0%
XXXXX012	COMPLETED	00:00:53	58.5%	10.6%
XXXXX013	COMPLETED	00:02:23	38.3%	10.6%
XXXXX014	COMPLETED	00:37:02	44.9%	10.6%
XXXXXX015	COMPLETED	00:44:33	34.0%	10.6%
XXXXXX016	COMPLETED	00:38:29	29.6%	10.7%
XXXXX017	COMPLETED	00:19:57	74.5%	10.8%
XXXXX018	COMPLETED	00:14:25	95.0%	10.8%

Not using memory allocation = inefficient, will use up space on nodes and leave less resources available

Fields available:

Account	AdminComment	AllocCPUS	AllocNodes
AllocTRES	AssocID	AveCPU	AveCPUFreq
AveDiskRead	AveDiskWrite	AvePages	AveRSS
AveVMSize	BlockID	Cluster	Comment
Constraints	Container	ConsumedEnergy	ConsumedEnergyRaw
CPUTime	CPUTimeRAW	DBIndex	DerivedExitCode
Elapsed	ElapsedRaw	Eligible	End
ExitCode	Flags	GID	Group
JobID	JobIDRaw	JobName	Layout
MaxDiskRead	MaxDiskReadNode	MaxDiskReadTask	MaxDiskWrite
MaxDiskWriteNode	MaxDiskWriteTask	MaxPages	MaxPagesNode
MaxPagesTask	MaxRSS	MaxRSSNode	MaxRSSTask
MaxVMSize	MaxVMSizeNode	MaxVMSizeTask	McsLabel
MinCPU	MinCPUNode	MinCPUTask	NCPUS
NNodes	NodeList	NTasks	Priority
Partition	QOS	QOSRAW	Reason
ReqCPUFreq	ReqCPUFreqMin	ReqCPUFreqMax	ReqCPUFreqGov
ReqCPUS	ReqMem	ReqNodes	ReqTRES
Reservation	ReservationId	Reserved	ResvCPU
ResvCPURAW	Start	State	Submit
SubmitLine	Suspended	SystemCPU	SystemComment
Timelimit	TimelimitRaw	TotalCPU	TRESUsageInAve
TRESUsageInMax	TRESUsageInMaxNode	TRESUsageInMaxTask	TRESUsageInMin
TRESUsageInMinNode	TRESUsageInMinTask	TRESUsageInTot	TRESUsageOutAve
TRESUsageOutMax	TRESUsageOutMaxNode	TRESUsageOutMaxTask	TRESUsageOutMin
TRESUsageOutMinNode	TRESUsageOutMinTask	TRESUsageOutTot	UID
User	UserCPU	WCKey	WCKeyID
WorkDir			

Example

- **seff** (note: may be inaccurate) for \$JOBID = 1773033
- Compare to sacct (optionally dump to text file)
- **sacct** -j 1773033
 - --format='AllocCPUs, AssocID, AveCPU, AveCPUFreq, AveDiskRead, AveDiskWrite, ConsumedEnergy, CPUTime, DerivedExitCode, Elapsed, MaxRSS, NNodes, ReqCPUs, ReqMem' > sacct.txt

```
(base) [bas44@picotte001 ~]$ seff 1773033
Job ID: 1773033
Array Job ID: 1773033_49
Cluster: picotte
User/Group: bas44/bas44
State: COMPLETED (exit code 0)
Cores: 1
CPU Utilized: 00:26:56
CPU Efficiency: 99.20% of 00:27:09 core-walltime
Job Wall-clock time: 00:27:09
Memory Utilized: 255.76 MB
Memory Efficiency: 1.67% of 15.00 GB
(base) [bas44@picotte001 ~]$ ■
```

locCPUS As	ssocID	AveCPU	AveCPUFreq	AveDiskRead	AveDiskWrite Consum	nedEnergy	CPUTime Deriv	vedExitCode	Elapsed	MaxRSS	NNodes	ReqCPUS	ReqMem
1	913					0	00:27:14	0:0	00:27:14		1	1	15Gn
1	913	00:26:49	925K	18.24M	0.96M	Θ	00:27:14		00:27:14	295513K	1	1	15Gn
1	913	00:00:00	3.52M	0.00M	0	Θ	00:27:14		00:27:14	714K	1	1	15Gn
1	913					Θ	00:27:30	0:0	00:27:30		1	1	15Gn
1	913	00:26:52	927K	18.24M	0.95M	Θ	00:27:30		00:27:30	299115K	1	1	15Gn
1	913	00:00:00	3.60M	0.00M	Θ	Θ	00:27:30		00:27:30	714K	1	1	15Gn
1	913					Θ	00:28:16	0:0	00:28:16		1	1	15Gn
1	913	00:27:44	1.01M	18.24M	0.96M	Θ	00:28:16		00:28:16	254559K	1	1	15Gn
1	913	00:00:00	3.60M	0.00M	Θ	Θ	00:28:16		00:28:16	714K	1	1	15Gn
1	913					Θ	00:28:12	0:0	00:28:12		1	1	15Gn

What is the Command Line?

It is an interactive text environment for running commands within the shell.

The shell is a language that provides an interface between the user and the programs of the operating system.

There are many different shell languages, but they often use the same/similar syntax for common tasks.

Shell examples: bash, sh, dash, zsh, fish, PowerShell, etc.

Useful Bash Syntax: History Expansion

Examples:

- !! (to run previous command)
- !:1 (to get all but the first parameter of the last command)
- !3 (to run the third item in history)
- !cd (to re-run the last cd command, or the last command that started with anything after "!")

And there is much more that can be done with history expansion.

Helpful Commands for Finding Data

- grep
- find
- cut
- sort
- uniq
- WC

To get more information about these commands run "man" followed by the command name. You can pass data between commands with "|"

Examples

```
(base) [tgc37@picotte001 workshop]$ sort abc.txt
aaa aaa
aaa aaa
aaa aaa
aaa zzz
aba abc
bbb abc
bbb bbb
bbb zzz
cbc cbc
cbc cbc
ccc ddd
(base) [tgc37@picotte001 workshop]$ head -n 2!:1
head -n 2 abc.txt
bbb bbb
aaa aaa
(base) [tgc37@picotte001 workshop]$ grep zzz abc.txt
aaa zzz
bbb zz
```

```
(base) [tgc37@picotte001 workshop]$ sort -k 2 abc.txt # sort
by the second column
aaa aaa
aaa aaa
aaa aaa
aba abc
bbb abc
bbb bbb
cbc cbc
cbc cbc
ccc ddd
aaa zzz
bbb zzz
(base) [tgc37@picotte001 workshop]$ cut -d" " -f 1 abc.txt |
sort | tail -n 2 # get first column, then sort it, then get the last
two rows
cbc
CCC
```

Other Topics to Explore

xargs, sed, awk, process and file substitution, profile files.

Support & Office Hours

• David Chin, Ph.D., System Administrator: urcf-support@drexel.edu

 Zoom link for Thomas Coard's Office Hours (Mon. 12-1 pm / Wed. 1-2 pm EST): https://drexel.zoom.us/j/87266595816?pwd=bW11eXJGVUIPZm96azRaL0U2RHNKQT09

Meeting ID: 872 6659 5816

Passcode: 662662

 Zoom link for Bahrad Sokhansanj's Office Hours (Tues. 1-2 pm / Thurs. 4-5 pm EST): https://drexel.zoom.us/j/86773001944?pwd=SWw4ZFp3MXFTbWtOVmZucXVBZWFUdz
 https://drexel.zoom.us/j/86773001944?pwd=SWw4ZFp3MXFTbWtOVmZucXVBZWFUdz
 https://drexel.zoom.us/j/86773001944?pwd=SWw4ZFp3MXFTbWtOVmZucXVBZWFUdz
 https://drexel.zoom.us/j/86773001944?pwd=SWw4ZFp3MXFTbWtOVmZucXVBZWFUdz
 https://drexel.zoom.us/j/86773001944?pwd=SWw4ZFp3MXFTbWtOVmZucXVBZWFUdz
 https://drexel.zoom.us/j/86773001944?pwd=SWw4ZFp3MXFTbWtOVmZucXVBZWFUdz
 https://drexel.zoom.us/j/86773001944?pwd=SWw4ZFp3MXFTbWtOVmZucXVBZWFUdz
 https://drexel.zoom.us/j/86773001944
 https://drexel.zoom.us/j/8677300194
 https://drexel.zoom.us/j/8677300194
 ht

Meeting ID: 867 7300 1944

Passcode: 600246