ﬁ” Code Profiling and
Benchmarking

Drexel FITSUM ALEBACHEW

UNIVERSITY

Welcome to the URCF

Founded in 2014

* Meet the University’s Need for a centralized Research Computing space

e Shared Condo Computing Model

URCF Faculty Board — HOLDING ELECTIONS Next Month
e 3 positions AVAILABLE — please email me or the board to be NOMINATED!!!
* Chair is Geoff Mainland

New Rates (Hopefully More Competitive) Coming in July!

First $100/month/group is FREE! Faculty can apply for GRANTS for Extra
Usage! Email Geoff Mainland, me, or ANYONE on the Board

Intro to Picotte

Job Scheduling in SLURM

1. Job Selection - every job in the pending job list is assigned a priority (a scalar value), and the entire list is sorted in order of priority, highest priority first.
2. Job Scheduling - this is where a job is assigned to a set of free resources. The system attempts to find suitable resources for the jobs in priority sequence.

The diagram below shows all the parameters which go into the calculation of a job's priority

==

i3

weight_tickets_share weight_tickets_functional overideTickets weight_wadting_time weight_deadliine

e

JobPriority

Intro to Picotte

SLURM Resource Allocation

Group B

|
Both groups : Group A Group Ais After compensation,
get 50% : returns and compensated for both groups receive
target share ! reclaims excess use by target shares again
Group A takes a its share Group B
break; Group B

consumes unused
resources

Intro to Picotte

Profiling vs. Benchmarking 5

Benchmarking and profiling are often used interchangeably, but they
are not the same:

* Benchmarking is measuring the overall runtime of a program
e Usually a single number result
* Can be used to test a program’s efficiency with different parameters

* Also used for testing speeds of different hardware

* In shared HPC clusters, you can benchmark your code to request
the right amount of resources and not waste allocations.

Intro to Picotte

Usage Rates

Picotte Usage Rates

Compute
Compute resource rate: $0.0123 per SU
Resources:

e standard compute nodes have 48 cores per node; there are 74 nodes in total
» big memory nodes have 1.5 TiB of memory (RAM) per node; there are 2 nodes in total

* GPU nodes have 4 GPU devices (cards) per node; there are 12 nodes in total

Picotte Compute Rates
Resource type Slurm partition | SU per unit resource .
Std. compute def 1 per core-hour
Big memory bm 68 per TiB-hour
GPU gpu 43 per GPU device-hour

Example: Using all 4 GPU devices on a GPU node for 1 hour consumes 172 SU, for a total charge of $0.0123 * 172 = $2.12

NOTE: all resource usage above is computed based on resources reserved for the actual lifetime of a job. E.g. a job requests 4 GPU devices for 1 hour, but runs only on one GPU device for
1 hour. While the actual usage is 1 GPU-hour, the resources set aside are 4 GPU-hours. The billable amount is 4 GPU-hours = 172 SU. This is because those resources are made

unavailable to others.

Persistent Storage

Storage rate: 4$48-8U-perTFiB-hour 1081 SU per TiB-month
To compare to Proteus (see above), this is equivalent to $3-66-perFiB-week $13.30 per TiB-month ~= $3.32 per TiB-week.
Example: storing 5 TiB of data for 1 month — $0.0123 * 1081 * 5 = $66.48

Intro to Picotte

Benchmarking 7

So how do we benchmark our code on Picotte?

- | >

-

Intro to Picotte

Benchmarking

Just let SLURM do it for you! SLURM automatically collects and saves
many metrics related to every job it runs. There are several commands

you can use:

* seff <jobid>: get efficiency statistics of a job

[picotteo@l] ~$ seff 2588667
Job ID: 2588667

Cluster: picotte

User/Group: fa496/vtune

State: COMPLETED (exit code ©)
Cores: 1

CPU Utilized: ©0:00:56

CPU Efficiency: 6.69% of ©0:13:57 core-walltime
Job Wall-clock time: ©0:13:57

Memory Utilized: 4.39 GB

Memory Efficiency: 43.95% of 10.00 GB
[picotteoo1] ~$ ||

Intro to Picotte

Benchmarking (cont.) 9

* sacct: show details about jobs ran by a user (can use -j <jobid> option)
* Can display all your recent jobs together

* Can be formatted with the --format (-o0) option

[picotte@@l] CT_Multi_Genus_Data$ sacct -j 2588667

JobID JobName Partition Account AllocCPUS State ExitCode
2588667 CT_Multi_+ gpu rosenmrip+ 1 COMPLETED 0:0
2588667 .bat+ batch rosenmrip+ 1 COMPLETED 0:0
2588667 .ext+ extern rosenmrip+ 1 COMPLETED 0:0
[picotte@@l] CT_Multi_Genus_Data$ sacct -o "JobID%17,JobName%15,Partition%4,NodelList%6,Elapsed,State, ExitCode%4,RegMem®%5,MaxRSS,MaxVMSize,A11ocTRES%32,A110cGRES%8" -j 2588667
JobID JobName Part Nodeli Elapsed State Exit RegMe MaxRSS MaxVMSize AllocTRES AllocGRE
2588667 CT_Multi Genus+ gpu gpuB@l ©0:13:57 COMPLETED ©:0 16Gn billing=172, cpu=1,gres/gpu=4, no+ gpu:4
2588667 .batch batch gpueel ©0:13:57 COMPLETED ©:© 10Gn 4608040K 61533548K cpu=1,mem=0, node=1 gpu:4
2588667 .extern extern gpue®l ©0:13:57 COMPLETED ©:0 16Gn 700K 217044K billing=172,cpu=1,gres/gpu=4,no+ gpu:4 -

[picotte@@l] CT_Multi_Genus_Data$

¥

* MaxRSS (Resident Set Size) variable above is the total RAM used by your job

Intro to Picotte

Fields available:

Account AdminComment AllocCPUS AllocGRES
AllocNodes AllocTRES AssocID AveCPU
AveCPUFreq AveDiskRead AveDiskWrite AvePages

AveRSS AveVMSize BlockID Cluster

Comment Constraints ConsumedEnergy ConsumedEnergyRaw
CPUTime CPUTimeRAW DBIndex DerivedExitCode
Elapsed ElapsedRaw Eligible End

ExitCode Flags GID Group

JobID JobIDRaw JobName Layout
MaxDiskRead MaxDiskReadNode MaxDiskReadTask MaxDiskWrite
MaxDiskWriteNode MaxDiskWriteTask MaxPages MaxPagesNode
MaxPagesTask MaxRSS MaxRSSNode MaxRSSTask
MaxVMSize MaxVMSizeNode MaxVMSizeTask McsLabel

MinCPU MinCPUNode MinCPUTask NCPUS

NNodes NodelList NTasks Priority
Partition QOS QOSRAW Reason
ReqCPUFreq ReqCPUFregMin ReqCPUFregMax ReqCPUFreqGov
ReqCPUS ReqGRES RegMem RegNodes
ReqTRES Reservation ReservationId Reserved
ResvCPU ResvCPURAW Start State

Submit Suspended SystemCPU SystemComment
Timelimit TimelimitRaw TotalCPU TRESUsageInAve
TRESUsageInMax TRESUsageInMaxNode TRESUsageInMaxTask TRESUsageInMin
TRESUsageInMinNode TRESUsageInMinTask TRESUsageInTot TRESUsageOutAve

TRESUsageOutMax TRESUsageOutMaxNode TRESUsageOutMaxTask TRESUsageOutMin
TRESUsageOutMinNode TRESUsageOutMinTask TRESUsageOutTot uiD

User UserCPU WCKey WCKeyID
WorkDir

Intro to Picotte

Benchmarking (cont.)

For runtime of simple commands or scripts:

* time [command]
 user: time for user code to run (no system calls or tasks)

* sys: time for system calls and tasks (e.g. memory allocation)

[picotte@Ol] demos$ time python time_ test.py

real em2.087s
user ©m2 .0855s

Sys omo .015s

Intro to Picotte

11

What is Profiling 12

Profiling is measuring the runtime costs of individual components of a
program

* Multiple results for individual parts of the code being profiled
* Aimed at finding bottlenecks in code

* Can be used to make your code run more efficiently

Similar concepts with benchmarking, but different applications!

Intro to Picotte

Profilers L

Different programming languages have different profilers:
* C/C++ have gprof, valgrind
* Python has cProfile, memory_profiler, line_profiler

* R has lineprof

Intro to Picotte

Python cProfile

cProfile is a very well-known built-in profiler for python.

14

* It measures the runtime of every function/system call within the code

* python —m cProfile [-o outputfile] [-s sort_order] (-m module| script.py)

Ordered by: st

indar

d n

in

1
o 1
froze 1N
froze 1n
froze |
froze LI
froze 1n
froze LM
froze 1M
froze 1mpo
froze 1mpo
frozen 1in
1 ¢ inm
frozen 1in

Intro to Picotte

ind and load
:.HI. = =
eleace

nit

nte

1 e (

1 €_messa
requlires b tin {
£] le

1Nt

ched

rent

cProfile

ncalls: number of times function was called

tottime: total time taken by function (sub-calls excluded)
percall: tottime/ncalls (rounded down)

cumtime: tottime + sub-calls (total time taken to complete)

2" percall: cumtime/primitive cells

15

More details:

Intro to Picotte

Some Advice 16

Loops are slow
* Avoid with built-in functions if possible
Use faster libraries if possible

* Some libraries offer superior speeds for certain uses

* numpy has the ability to use multiple cores

Intro to Picotte

Questions? Thank You for Coming! 17

Feel free to attend my office hours every weekday 2 - 3 pm (any
changes will be reflected on the URCF wiki main page):

Intro to Picotte

