

Working on Picotte

Overview

- What is Picotte?
- Using Picotte:
 - Logging in
 - Transferring files
 - Job scripts
- Important commands

What is Picotte?

Picotte is a high-performance computing cluster

- Operating System: Red-Hat Enterprise Linux 8 64-bit
- Default shell: Bash (Bourne Again Shell)
- Job scheduler: SLURM Workload Manager

Specifications: https://drexel.edu/core-facilities/facilities/research-computing/service/picotte/

Picotte (Nodes)

Picotte has a total of 90 nodes:

- 1 management node
- 1 login node
- 88 compute nodes:
 - 74 def nodes 48 cores/node, 192 GB RAM/node
 - 12 gpu nodes 48 cores/node, 192 GB RAM/node, 4 Nvidia Tesla V100-SXM2
 32GB GPU devices/node
 - 2 bm nodes 48 cores/node, 1.5 TB RAM/node

Total of 4224 compute cores, 19.1 TiB RAM

4

Picotte (Storage)

Picotte has 3 levels of storage, each better suited for different uses:

- Persistent (NFS): for long-lived data (includes /home and /ifs)
 - 649 TB, 10 Gbps Ethernet (big and slow)
 - Main storage for most data, avoid using if you have lots of I/O
- Local Scratch (TMP) : internal drives in nodes (/tmp)
 - 854 GB, 12 Gbps SAS SSD (per node)
 - Fast, but not shared, ideal for single node jobs
 - \$TMP variable to access from within a job
- Fast Parallel Shared Scratch (BeeGFS): shared memory b/n nodes (/beegfs)
 - 175 TB, 100 Gbps Infiniband Network
 - Fast and shared, ideal for intensive I/O operations across multiple nodes
 - \$BEEGFS_TMPDIR variable to access from within a job

5

Picotte

6

Logging In

- To get access to Picotte, you MUST initially be logged into Drexel's VPN or using the Drexel on-campus Wi-Fi.
- Logging into Drexel's VPN:
 - Download and install Cisco AnyConnect Secure Mobility Client
 - <u>https://vpn.drexel.edu/</u>
 - Launch Cisco AnyConnect Secure Mobility Client
 - Sign in with Drexel credentials

Detailed instructions: https://drexel.edu/it/help/a-z/VPN/

Logging In (cont.)

There are several ways to log into Picotte:

- OpenSSH (Windows) or Terminal (Mac)
 - ssh username@picottelogin@urcf.drexel.edu
- MobaXterm for GUI display
- SSH through Visual Studio Code
- Other SSH clients like PUTTY

More info:

- Windows: https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Tips_for_Windows_Users
- Mac: <u>https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Tips_for_macOS_Users</u>

Logging in with MobaXterm

- Open MobaXterm application
- Click on 'Session' in the menu tab
- Choose SSH option
- Enter hostname and username
- Enter password

More info: https://mobaxterm.mobatek.net/

Logging in with MobaXterm

MobaXterm													- 🛛	×	
Terminal Session ^S															
Session Servers	SSH Telnet	💣 Rsh	Xdmcp	INDP	VNC	 FTP 	SFTP	serial	Sile	∑ Shell	Browser	🔊 Mosh	😵 Aws S3	INSL	
> PuTT	S Basic SSH sett	ings													
picot	Remote host *	picottelo	gin.urcf.dr	exel.edu		Speci	fy usernar	me fa496	5		<u> </u>	2	Port 22		
N picot															
tux.c	S Advanced SSH	settings	💽 Term	inal setting	gs 🔆 M	Network se	ettings 🤞	Bookma	rk settings	5					
				Secu	ire She	ell (SSH) sessioi	n					9		
							,								
UNREGISTERED						≥OK		🛛 Can	icel						
								Cur							
					Intro	to Pico	tte								

GUI Displays and Modules

You can use MobaXterm(Windows)/Xquartz(Mac) to display app GUIs like MATLAB, Jupyter Notebook, etc. on your local machine from Picotte:

- Log into Picotte using MobaXterm
- Load the modules for the applications you want to run
 - Modules need to be loaded when using apps installed on Picotte
 - module list see loaded modules
 - module load <name> load a module
 - module avail <optional query> see available modules
- Run the applications from the command line to open a new window containing the GUI.

Logging in with Visual Studio Code

- Install an OpenSSH compatible SSH client on device
- Install 'Remote Development' extension pack on VS Code
- Go to the 'Remote Explorer' tab on VS Code and click on 'Add new'
- Enter your username and hostname as 'ssh username@hostname'
- Enter your password when prompted

Detailed instructions: <u>https://code.visualstudio.com/docs/remote/ssh</u>

Visual Studio Code Tips

- Extensions can be installed on the remote environment for useful features like language support
- Application configuration can be saved into a workspace file for easier access when logging in again:
 - Having multiple directories open together
 - Setting different options specific to that workspace
 - Resume right where you left off

Transferring Files

There are also several ways to transfer files to and from Picotte:

- Shell commands like scp, sftp, pscp
 - scp <source address> <destination address>
 - address format (remote): username@hostname:<working directory>

fitsu\$ scp	fa496@picottelogin.urcf	.drexel.ed	du:/home/fa	496/job.sh	/mnt/c	/Users/	fitsu/Deskt	op/job.sh
Password:								
job.sh					100%	162	4.1KB/s	00:00
fitsu\$								

- MobaXterm/VS Code
 - To copy from Picotte to local machine:
 - Right click on file in explorer and click on download
 - To copy from local machine to Picotte:
 - Open directory in file explorer and drag file from local machine to file explorer

Creating/Submitting Job Scripts

Job scripts are shell scripts that specify the details/options to the job:

- Always start with shebang #!/bin/bash
- Use '#SBATCH' to set options
- Load modules being used
- Run program executable/command
- Submit your script with the command 'sbatch myjob.sh'

More info: https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Writing_Slurm_Job_Scripts

Creating/Submitting Job Scripts

Home > demos >
Image: my_job.sh

- 1 #!/bin/bash
- 2

7

9

- 3 #SBATCH --partition=def
- 4 #SBATCH --nodes=1
- 5 #SBATCH --mem=5GB
- 6 #SBATCH --time=00:30:00
- 8 echo "Hello World!"

16

Viewing your Results

- The standard output of the program will be redirected to a new file named 'slurm-jobId.out' in the same directory as job script.
- Any file outputs will be saved in the same directory as job script with same name.

SLURM commands

Some important SLURM commands:

- sbatch: submit a job script to Slurm
 - -p, --partition=par specify partition to run job (def by default)
 - -N, --nodes=numOfNodes specify how many nodes to allocate (1 by default)
 - -t, --time=hh:mm:ss specify a time limit for the job (30min by default)
 - --mem=size specify required memory per node (4GB by default)
 - --mail-user=user@host send job status to email (none by default)

[picotte001] demos\$ sbatch my_job.sh
Submitted batch job 2566359
[picotte001] demos\$

- scancel <jobId>: cancel a job that is pending/running
- squeue: display a list of running jobs
 - --me option to show only your jobs
 - -j <jobId> for a specific job

[picotte001] demos	squeue						
JOBID	PARTITION	NAME	USER	ST	TIME	NODES	NODELIST(REASON)
2566352	def	stata-mp	ok85	R	3:06:48	1	node001
2566358	def	Ni3Al	cat368	R	30:35	1	node004
2566357	def	Al3Co	cat368	R	32:46	1	node003
2564475	def	s433.sh	db3525	R	1-23:23:42	1	node041
2566356	def	1cpn	aag99	R	1:15:27	1	node002
2565092	def	1cpn-aut	aag99	R	1-19:19:10	1	node048
2565085	def	1cpn-aut	aag99	R	1-19:33:34	1	node047
2534848_[4-7]	gpu	SST.sh	tv349	PD	0:00	1	(AssocGrpBillingMinutes)
2534926_[4-7]	gpu	SST.sh	tv349	PD	0:00	1	(AssocGrpBillingMinutes)

- srun: runs a command/script as a job
 - can be used for interactive sessions
 - srun [OPTIONS] --pty /bin/bash
 - can be used to quickly execute commands on compute nodes

- sacct: show details about jobs ran by a user (can use -j <jobid> option)
 - Can display all your recent jobs together
 - Can be formatted with the --format (-o) option

[picotte001]	CT_Multi_Ge	nus_Data\$ s	acct -j 258	8667							
JobID	JobName	Partition	Account	AllocCPUS	State	ExitCode					
2588667	CT_Multi_+	gpu	rosenmrip+	1	COMPLETED	0:0					
2588667.bat+	batch		rosenmrip+	1	COMPLETED	0:0					
2588667.ext+	extern		rosenmrip+	1	COMPLETED	0:0					
[picotte001]	CT_Multi_Ge	nus_Data\$ s	acct -o "Jo	bID%17,JobN	Name%15,Part	tition%4,No	deList%6,Ela	psed,State,	ExitCode%4, ReqMem%5, MaxRSS, MaxVMSi	ize,AllocTRES%32,AllocGRES%8'	'-j 2588667
	JobID	JobName F	Part NodeLi	Elapsed	State	Exit ReqMe	MaxRSS	MaxVMSize	AllocTRES A	AllocGRE	
25	88667 CT_Mul	ti_Genus+	gpu gpu001	00:13:57	COMPLETED	0:0 10Gn	i		<pre>billing=172,cpu=1,gres/gpu=4,no+</pre>	gpu:4	
2588667.	batch	batch	gpu001	00:13:57	COMPLETED	0:0 10Gn	4608040K	61533548K	cpu=1,mem=0,node=1	gpu:4	
2588667.e	xtern	extern	gpu001	00:13:57	COMPLETED	0:0 10Gn	1 700K	217044K	<pre>billing=172,cpu=1,gres/gpu=4,no+</pre>	gpu:4	
[picotte001]	CT_Multi_Ge	nus_Data\$									

• MaxRSS (Maximum Resident Set Size) above is the total RAM used by your job

- sinfo: display status of nodes in Picotte
- seff <jobId>: report efficiency statistics on a job

[picotte001] ~\$ seff 2588667 Job ID: 2588667 Cluster: picotte User/Group: fa496/vtune State: COMPLETED (exit code 0) Cores: 1 CPU Utilized: 00:00:56 CPU Efficiency: 6.69% of 00:13:57 core-walltime Job Wall-clock time: 00:13:57 Memory Utilized: 4.39 GB Memory Efficiency: 43.95% of 10.00 GB [picotte001] ~\$

More info: <u>https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Slurm_Quick_Start_Guide#Commands</u>

SLURM commands (slurm_util)

These commands have the same behavior and options as their base commands but display output with some added detail.

Run the command "module load slurm_util" to use (consider adding the line to ~/.bashrc file to do it automatically on log-in:

- squeue_detail (squeue_long)
- sinfo_detail
- sacct_detail

Usage Rates

Picotte Usage Rates

Compute

Compute resource rate: \$0.0123 per SU

Resources:

- standard compute nodes have 48 cores per node; there are 74 nodes in total
- big memory nodes have 1.5 TiB of memory (RAM) per node; there are 2 nodes in total
- GPU nodes have 4 GPU devices (cards) per node; there are 12 nodes in total

Picotte Compute Rates								
Resource type	Slurm partition	SU per unit resource						
Std. compute	def	1 per core-hour						
Big memory	bm	68 per TiB-hour						
GPU	gpu	43 per GPU device-hour						

Example: Using all 4 GPU devices on a GPU node for 1 hour consumes 172 SU, for a total charge of \$0.0123 * 172 = \$2.12

NOTE: all resource usage above is computed based on resources reserved for the actual lifetime of a job. E.g. a job requests 4 GPU devices for 1 hour, but runs only on one GPU device for 1 hour. While the actual usage is 1 GPU-hour, the resources set aside are 4 GPU-hours. The billable amount is 4 GPU-hours = 172 SU. This is because those resources are made unavailable to others.

Persistent Storage

Storage rate: 1.48 SU per TiB-hour 1081 SU per TiB-month

To compare to Proteus (see above), this is equivalent to \$3.06 per TiB-week \$13.30 per TiB-month ~= \$3.32 per TiB-week.

Example: storing 5 TiB of data for 1 month \rightarrow \$0.0123 * 1081 * 5 = \$66.48

Questions?

 Feel free to attend my office hours every weekday 2 - 3 pm (any changes will be reflected on the URCF wiki main page): <u>https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Main_Page#Talks_and_ Workshops</u>