PYTHON

Hoang Oanh Pham

Content

1.Introduction
2 .Variable

3.Arithmetic operator

4.lnput, output

5.Error

6.List, set, dictionary

7.Control flow: if-else, for loop, while loop
8. Class

9.Regular expression

Why Python?

e Pythonis
e Simple, easy to learn syntax
* Powerful and flexible
e Short and easy to read code
* Large Collection of additional Libraries for special tasks

Source Code

Code is the plain text representation of the program.

A line of code is a single row of text.

A statement is an instruction in the code.

A program is just a collection of statements executed in order.

Variables

References to locations in memory.

Created by using the assignment operation using the = symbol (assignment operator)

The name of the variable is on the left side of the “equals” sign

The value of the variable is on the right side of the “equals” sign
* Ex:

* a=5

* b=9

Variable Naming Rules

Letters (a - zor A - Z) , digits (o - 9), or underscore (_) characters.

The first character must be a letter or an underscore

The name cannot contain spaces or any other special characters or reserved word
(keyword)

Always choose a meaningful name

Python is case sensitive

Upper and lower case letters are not the same (A # a)

Variables Type:

Tells us what kind of data the variable holds

The same operators act differently on different types

e a=7
* b="cat’
* c=2

» print(a*b) #'catcatcatcatcatcatcat’
« print(a*c) #14

Multiplication means duplicate for strings

* Types:
* Number: Integer(whole numbers), Float(decimal numbers)
* String

Arithmetic Operators

SYMBOL OPERATION Description/Notes
+ Addition Adds two numbers
: Subtracts one number from another
- Subtraction ;
Also use for negation
3 Multiplication Multiplies two numbers
/ Division Divides left hand operand by right

hand operand

/]

Floor Division

Rounds down the result of a division to
the closest whole number value.

%

Remainder, or modulo

Divides left hand operand by right
hand operand and returns remainder

* %

Exponent

Performs exponential (power)
calculation on operators

Combined Operators:

4= X +=5 X=X+5
-= y-=2 y=y-2
*= Z *=10 Z=277%10
/= a/=b a=a/b

%= c %= 3 c=c%3

Input, Output

* To get input from the user we use the input () built-in function
 The print function can be used to display the value of a variable

 The input function always returns a string type (text)

Ex:
>eopoan s At Rt volir pname s)

EReassrail v a mes

>>> name = 1nput ()

Errors:

* Syntax errors
* Logic errors

* Run-time errors

Syntax Errors

e Syntax error is a mistake such as a:
* Misspelled word
* Missing punctuation character
* Incorrect use of an operator

* A syntax error occurs when a statement in the program violates the rules of the programming
language

* A syntax error must be fixed before the program can be executed

* The interpreter will generate a message when encountering a syntax error.

Logic errors

* Alogic error causes the program to operate incorrectly, but not to fail.

* The interpreter does not find these errors

Run-time errors

* Common examples:

dividing by zero

referencing missing files

calling invalid functions

not handling certain input correctly

Lists contains a collection or sequence of values

Python can create lists of any type

Lists can contain strings, numbers, even other lists
List can contain a mix of types

Each item in the list is called an element

We can use lists to process a variety of types of data.

To define a list, use the [] and separate the elements with commas.

Access to elements

* We use the subscript operator [] to access elements in a list

e Use a valid index value
* An integer value
* First element is at index zero
* Index of the last element is the number of elements minus 1

* Negative numbers can be used to access elements from the rightmost element of the list
» Use the colon [:] to get slices of a list

sample.py <untitled> *
myList = ["apple", "banana", "cherry", "orange", "pear", "cucumber", "mango"]
print(myList[-1])
print(myList[3:6])

>>>

mango
['orange', 'pear', 'cucumber']

Methods

* append (element) addselement atthe end of the list.

 remove (element) removes the first occurrence of element from the list, if it’s there.
* pop (index) removes the element at the given index.

* index (element) finds the index of the first occurrence of element in the list.

* count (element) tellsyou the number of times that element appears in the list. It returns
an integer.

Dictionary:

A container used to describe associative relationships

Represented by the dict object type

A dictionary maps keys with values
e Key is a term that can be located in the dictionary
e Keys are unique- each one can only be used once
* Could be: string, tuple, or number
e Value describe data associated with key
* Any type

To define a dictionary, use the {} to surround key:value pairs.

Separate key:value pairs with commas

Access to elements

* Use the key inside the []

* Entries in a dictionary can be added, deleted and modified as needed
 dictionary[key] = value adds a new pair if it doesn’t exist
* dictionary[key] = value modifies existing entry if it exists
* del dictionary[key] deletes entry if it exists

sample.py <untitled> * >>>

thisdict = { Ford
"brand”: "Ford", {'model': 'Mustang', 'vyear': 1964}
"model”: "Mustang",
"year": 1964

-

¥
print(thisdict["brand"])

del thisdict["brand"]
print(thisdict)

DO NOYUT S WN

unordered collection of unique elements

Elements do not have a position or index.
Elements are unique: No elements in the set share the same value.

A set can be created using the set () function, which accepts a sequence-type iterable object
(list, tuple, string, etc.)

A set literal can be written using curly braces { } with commas separating set elements.

Note that an empty set can only be created using set ()

Operations:

e len(setl) Number of Elements in Set

» setl.update (set2) Addall elements from set2 into setl
* set.add(value) Addvalue toset

e set.remove (value) Remove value from set

* set.pop () Remove an arbitrary element from set

e set.clear () Clearsall elements from set

If-else:

* if expression:
» Statement(s)

e else:
» Statement(s)

Ex

sample.py
import os
import sys

=

a = 33
b = 200
if b > a:
print("b is greater than a")
else:
print("b is less than a")

OOoONOYUT HS~ WN

>>>
b 1s greater than a

For loop

e for valin sequence:
Loop body

sample.py <untitled> *
1 my_dict = {'color': 'blue', 'fruit': 'apple', 'pet': 'dog'}
2 for key in my dict:
3 print(key, '->', my dict[key])
4

>>>

color —-> Dblue
fruit -> apple
pet —-> dog

sample.py
1 1listA = [1,2,3,4,5]
2 for x in listA:
3 print(x)

>>>

O w -

While loop

* While test_expression:
* Body of while

Ex

sample.py = sample.py
myList = ['pineapple', 'banana’', 'watermelon', 'mango']

index = 0

while index < len(myList):
element = myList[index]
print(len(element))
index += 1

functions

Function: a named piece of code that performs a specific task

Function call: invoking the function name causes the function to execute.

Arguments and Parameters: values given as input to the function.

def functionname(parameter):
Function code
return [expression]

sample.py *
def square(x):
return x*x
print(square(5))

>>>
25

* Classes are created by keyword class.

* Attributes are the variables that belong to a class.

» Attributes are always public and can be accessed using the dot (.) operator.

Ex

sample.py
class Person:
def __init__ (self, age, name):
self.age = age
self.name = name

def greet(self):
print(f'Hello, {self.name}. You are {self.age} years old."')

personl = Person(age=20, name="Rose")
personl.greet()

>>>
Hello, Rose. You are 20 years old.

Regular expression:

« A regular expression is a special string (a sequence of characters)
« Describes a search pattern, each regular expression matches a set of strings
Each dot . and ? must match exactly one character
[...] matches any listed character
* matches anything including an empty string
~$ beginning and end of line

1ls a?.txt

al.txt az2.txt ab.txt

1ls labl.???

labl.doc labl.pdf

ls labl.*

labl. labl.c labl.doc

labl.docx labl.pdf

ls alab]*.?27?27?

abcd.txt abc.txt ab.txt

sources:

* https://www.programiz.com/python-programming/class

e Computer Programming Courses — Drexel University

https://www.programiz.com/python-programming/class

Thank youl!!!

