
Edgar H. Sibley
Panel Editor

Central-processing-unit schedulers have traditionally allocated resources
fairly among processes. By contrast, a fair Share scheduler allocates
resources so that users get their fair machine share over a long period.

A FAIR SHARE SCHEDULER

J. KAY and P. LAUDER

One of the critical requirements of a scheduler is that it
be fair. Traditionally, this has been interpreted in the
context of processes and has meant that schedulers were
designed to share resources fairly between processes
[3, 9, lo]. More recently, it has become clear that
schedulers need to be fair to users rather than just pro-
cesses. This is reflected in work such as [5], [ll], [12],
[IS], and [19].

The context for the development of Share was that of
the principal teaching machine in a computer science
department. We had a large user community, domi-
nated by 1000 undergraduates in several classes, as
well as a staff of about 100. Our load was almost exclu-
sively interactive and frequently had extreme peaks
when major assignments were due. On a typical day,
there were 60-85 active terminals, mainly engaged in
editing, compiling, and (occasionally) running small-
to-medium Pascal programs. All this activity was sup-
ported by a DEC VAX 11/780 running AUSAM, a local
version of UNIX@ [17] that is oriented toward a student
environment.

UNIX provides a fairly typical scheduler [l]. It was
inadequate in our environment, however, for a number
of reasons:

(1) It gave more of the machine to users with more
processes, which meant that users could easily in-
crease their share of the machine simply by creat-
ing more processes.

(2) It did not take into account the long-term history
of a user’s activity. Thus, if a student used the

UNJX is a registered trademark of AT&T Bell Laboratories.

0 1!188 ACM 0001.0782/88/0100-0044 $1.50

(3)

(41

machine heavily for approximately two hours, the
same machine share was allocated as to a student
who had not used the machine for some time.
When one class had an assignment due and all the
students in that class wanted to work very hard,
everyone, including other students and staff, suf-
fered with poor response.
If someone needed good response for activities like
practical examinations or project demonstrations,
it was difficult to ensure they would get that re-
sponse without denying all other users access to
the machine.

The first three of these manifest the inequitable way
the process scheduler affects users.

On many systems these problems are partially ad-
dressed by the charging mechanism [14, 161. Typically,
charging systems involve allocation of a budg,et to each
user, and as users consume resources, they are charged
for them. We might call this the fixed-budget model, in
that each user has a fixed-size budget allotment. Then,
as the resources are used, the budget is reduc:ed, and
when it is empty, the user cannot use the machine at
all. A process can get a better machine share if the user
who owns it is prepared to pay more for the resources
used by that process. The fixed-budget model. can be
refined so that each user has several budgets, each as-
sociated with different resources.

We control allocation of some resources wi-th a fixed-
budget charging mechanism. In particular, we use this
approach in these cases:

(1) For resources such as disk space, each user has a
limit.’

‘If a user exceeds this limit, the user is warned at the time and then at each
log in for three log ins. After that, the user is not allowed to log in.

44 Communications of the ACM Janua y 1988 Volume 31 Number 1

Computing Practices

(21

(3)

(41

Resources such as printer pages are allocated to
each user as a budget that has a tight upper bound
and is updated each day.’
Daily connect limits are available to prevent indi-
viduals from exceeding their limit on the machine
within a single day.
Weekly connect limits are sometimes used to pre-
vent students from spending too much time on
computing (compared to other subjects), and to en-
courage students to work steadily on assignments
from the first week they are set, right through to
the last week. This, however, commonly has the
effect of denying students any machine access near
the assignment deadline, even though the machine
is lightly loaded and students would like more ma-
chine access to finish and improve their programs.

There are also other utilities to help allocate re-
sources, including a terminal-booking program that al-
lows students to reserve a terminal at particular times
each week.

All of these measures helped control consumption
of resources, but did not deal with the problems of
central-processing-unit (CPU) allocation we described
earlier. It was for these reasons that we developed the
Share scheduler. Although Share was motivated by our
particular problems in a student environment, it
equally serves the needs of any user community that
shares a machine that is not operating for financial
profit. Indeed, Share has been implemented in a re-
search environment with many users from different or-
ganizations that have chosen to share the capital and
running costs of a machine.3

To date, Share has been used exclusively to allocate
CPU time, though it takes into account the consump-
tion of all resources. We realize that Share may be
applicable to the scheduling of resources other than
CPU, but for simplicity, this article concentrates on
CPU scheduling.

OBJECTIVES OF SHARE
The only way many systems link charging and schedul-
ing is where users can specify the processes they agree
to be charged more for, in return for being given prefer-
ence in scheduling. Indeed, UNIX offers this kind of
mechanism in nice, an attribute of a process that a user
can adjust to alter its scheduling priority. On an in-
house machine, this approach is adequate. A more
natural approach, however, is to regard each user as
having an entitlement to a fair share of the machine,
relative to other users. Then, the task of the scheduling
and charging systems must ensure that

l individuals cannot get more than their fair share of
the machine in the long term, and

l the machine can be well utilized.

’ For example, a user might have a printer page bound of 10 pages and a daily
increment of 2 owes. This means the user starts with a budget of 10 oaees: . - . I
if, say. 3 pages are printed in one day, the budget for the rest of the day is
7 pages. and provided no more printing is done that day, the budget at the
beginning of the next day will be 9 pages.

’ A Cray X-MP at AT&T Bell Laboratories.

In addition, we extended the notion of fair shares to
cover groups of individuals so that Share can allow the
sharing of a machine between independent organiza-
tions.

To achieve fair sharing and be practicable for the
individual and independent groups that share the ma-
chine, the objectives of Share were that it

(1)
(21
(3)
(4)

(51
(6)
(7)
(8)

(9)

seem fair;
be understandable;
be predictable;
accommodate special needs: Where a user needs
excellent response for a short time, it should per-
mit this with minimum disruption to other users;
deal well with peak loads;
encourage load spreading;
give interactive users reasonable response;
give some resources to each process so that no
process is postponed indefinitely; and
be inexpensive to run.

USER’S VIEW OF SHARE
Essentially Share is based on the principle that every-
one should be scheduled for some resources

l according to their entitlement,
l as defined by their shares, and
l as defined by their resource usage history.

This is illustrated in Figure 1, which shows that a user
can expect poorer response if the user has had his or
her fair machine share. This, in turn, gives other users
a chance to get their fair share.

A user’s shares indicate his or her entitlement to use
the machine. The more shares a user has, the greater
the entitlement. This should operate in a linear fashion
so that, if user A has twice as many shares as user B,
then in the long run, user A should be able to do twice
as much work as user B.

Every user has a usage, which is a decayed measure of

Each user

Has’ ’ Has

/ b

Shares

Define Defines

4 4

User’s machine
share entitlement

User’s actual
machine share

Usage

Share adjusts user response to make
actual machine share and entitlement equal

FIGURE 1. A User’s View of Share

[anuay 1988 Volume 31 Number 1 Communications of the ACM 45

Computing Practices

the work the user has done. The decay rate is defined by
an administrative decision that determines how long a
user’s history of resource consumption affects his or her
response. For example, in its first implementation in
a student environment, the decay rate was set so that
usage had a half-life of three days to encourage stu-
dents to spread their machine use over the week.

not need fast response for a process will use nice out
of generosity. In our environment we felt that it was
worthwhile to give users an incentive to use nice, so
we reduced the costs charged for processes with larger
nice values.

Although it is normal for schedulers to use decayed
CPU usages, Share’s use of decayed resource usage in
charging is a departure from traditional approaches.
Where a machine is solely for in-house use, the only
need for a raw (undecayed) resource consumption tally
is to monitor machine performance and throughput,
and to observe patterns of user behavior.

Finally, the charges that Share uses are defined by the
relative costs of different resources. For example, we
associate a charge with memory occupancy, another
with systems calls, another with CPU use, and so on.
Note that this is another difference between Share and
conventional schedulers that define a proces.s’s sched-
uling priority only on the process’s consumption of
CPU time. In Share, CPU scheduling priority is affected
by total resource consumption.

The decayed usage is also normalized by the user’s
shares. This might look as though it makes the machine
less expensive to users with more shares. In essence,
Share attempts to keep the actual machine share defined
by normalized usage the same as the machine entitlement
defined by shares. From the user’s point of view, Share
gives worse response to users who have had more than
their fair share so that they cannot work as much as
users who have not had their fair share. So users see
that, as their normalized usage increases, their response
becomes worse. (This assumes allowance is made for
machine load.) We provide a simple command that
displays a user’s profile that includes their usage and
the machine share they can expect.

In addition, we set charges at different levels at dif-
ferent times of the day. This is another administrative
decision. For example, during the time the university is
in session, we charge a peak rate during normal work
hours, somewhat less for the hours before and after,
and much less at off-peak hours.

Note that Share represents a radical departure from
the traditional approaches to charging as described in
[&I]: “Prices should not be changed too frequently, since
stability is one of the accepted requirements of a charg-
ing system.”

This approach contrasts strikingly with conventional
charging and scheduling systems that schedule pro-
cesses equally, provided the user who owns them has a
nonempty budget. In the fixed-budget model, the users
who consume their fair share, by emptying their bud-
gets, do not get any available resources. In the extreme
case, there may not be any users because everyone who
wants to use the machine has empty budgets. For an in-
house machine, this does not make sense, and can gen-
erate substantial administrative overheads as users seek
extra allocations.

We agree that users need to understand the charging
system and see it as stable, but we argue tha.t this does
not require constant behavior. It can also be achieved
by behavior that changes steadily, as in Share, where
response steadily degrades as a user’s resource con-
sumption increases relative to other users.

The number of shares allocated to a user is, essen-
tially, an administrative decision. In a situation where
independent organizations share a machine, however,
the shares that should be allocated to individual users
depend both on the entitlement that their organization
has and the individual’s entitlement within the organi-
zation. For simplicity, we describe Share first in terms
of a simple situation where there are no independent
organizations involved: All users’ shares are simply de-
fined to indicate their right to work compared to other
users. We deal with the more complex situation where
the combined usage of groups of users must be consid-
ered, in the description of hierarchical Share.

We must emphasize that the administrative decisions
are very important to Share’s fairness. For example, we
have just noted that we charge less at off-peak times
and this seems to help spread the machine load. An-
other important factor in setting this policy, however, is
that users consider it fair that they be charged less for
the inconvenience of working after normal hours. Some
of the administrative decisions are not easy though.
The fixed-budget model has the advantage that one can
easily supplement empty budgets and the initial budget
size may not be as critical. By contrast, in Share, the
shares allocated define the right to do work so that,
when we allocate each first-year student half the shares
given to a second-year student, we are defining the
relative amount of work we expect each to extract from
the machine.

Another factor in scheduling is the individual users’
rights to alter the relative scheduling priority of their
processes. We have preserved the UNIX nice, a number
in the range O-19 that a user can associate with a pro-
cess. When users assign a nonzero nice value to a pro-
cess, they indicate that poorer response is acceptable.
The larger the nice value, the poorer the response. The
way that this affects charging is another administrative
decision: The name, nice, suggests that users who do

OVERVIEW OF THE IMPLEMENTATION
As one might expect, conceptually there are two main
components, one at the user level and the other at
the process level.

User Level

46 Communications of the ACM]anuaiy 1988 Volume 31 Number 1

At this point, Share computes the charges due to a user
for the resources the user has consumed during the last
cycle of the user-level scheduler. The charges are for
all resources consumed and are lower at off-peak pe-
riods. This part of the scheduler does not need to run
frequently because usage generally changes slowly.

Each user can get an estimate of their share of the
machine by comparing their usage with that of all ac-
tive users. Since this is a convenient and intuitive indi-
cation of the response a user can expect, we provide a
percentage estimate of the user’s machine share as part
of the standard user profile information.

Process Level
The remainder of Share operates at the process level.
Each process has a priority, and the smaller its value,
the better the scheduling priority. We also introduce
the term active process to describe any process that is
ready to run, and at any point, the active process that
actually has control of the CPU is called the current
process. There are three types of activity at the process
level:

(11

(2)

(3)

that associated with the activation of a new pro-
cess;
the regular and frequent adjustment of the priority
of the current process; and
the regular, but less frequent, decaying of the
priorities of all processes.

The first occurs in a number of situations, including
times when a process relinquishes control of the CPU,
times when the active process is interrupted for some
reason, and at regular times when the scheduler usurps
the currently active process to hand control to the low-
est priority process that is ready to run.

Computing Practices

Process activation

l Update costs incurred by the current process.
l Select the process with lowest priority, and set it run-

ning.

Next is the adjustment to the priority of the current
process, which defines the resolution of the scheduler.
This ensures that the CPU use of the current process
increases (worsens) its priority.

Priority adjustment

l Increase the priority of current process in proportion
to the user’s usage, shares, and number of active
processes.

Finally, there is the regular decaying of all process
priorities, which must be done frequently compared to
the user-level scheduler, but with longer time intervals
than the scheduler’s resolution.

Decay of process priorities

l Decay all process priorities, with slower decay for
processes with nonzero nice values.

DETAILED IMPLEMENTATION
The implementation of Share is shown in Figure 2. The
remainder of this section explains each component, in-
cluding the setting of the various parameters (that can
be altered as the system runs).

Every t 1 seconds: User-level scheduling

For each user,

decay usage and update with costs incurred in last tl seconds:

usage,,,, = usage,,,, X Kl + charges,,,,;

reset cost tally:

charges,,,, = 0.

Every t 2 seconds: Decay of process priorities

For each process,
1

PriofltYprccess = priority,,,,,,, X K2 X (niceprocess + K2').

Every t 3 seconds: Priority adjustment

priority ,
= pr iOrltycur.ent-p.ocesa

usage,,,,,,,,,,, X active-processescu,,en,u,e,
swrent-process +-

sharesfu,,,nt-u,,,

At each scheduling event: Current process selection

char9escurrenr-user = charges,u.,,nL,,,, + cost,v,ne

Run process with lowest priority.

FIGURE 2. Share Implementation

January 1988 Volume 31 Number I Communications of the ACM 47

Computing Practices

User-Level Scheduling
The user-level scheduler is invoked every t 1 seconds.
The value of t 1 defines the granularity of changes in a
user’s usage as he or she uses the machine. Since usage
is generally very large compared to the resources con-
sumed in a second, t 1 can be of the order of a few
seconds without compromising the fairness of the
scheduler. The advantage of making t 1 reasonably
large is that somewhat costly computations can be
made at this level without prejudicing the time effi-
ciency of Share. Our VAX implementation makes t 1

four seconds, which is 240 times the scheduler’s resolu-
tion. On the Cray, we have found that four seconds
(400 times Share’s CPU charging resolution) is also
acceptable.

The first component of the user-level scheduler de-
cays each user’s usage. This ensures that usages remain
bounded and the value of the constant K 1 in combina-
tion with t 1 defines the rate of decay. We generally
consider the effect of K 1 in terms of the half-life of
usage. In a student environment, we have used a half-
life of three days. In other contexts, it has been much
shorter, but generally on the order of several hours. At
a conceptual level, this step is performed for all users.
In fact, the effect of the calculation is computed as each
user logs in, and the actual calculation need only be
performed for active users.

The next part of user-level scheduling involves up-
dating the usage of active users by the charges they
have incurred in the last t 1 seconds and resetting the
charges tally.

Process-Level Scheduling
From this point on, we discuss the low-level scheduler
that deals with processes. It operates in terms of the
priority of each process. As is common practice in pro-
cess schedulers, the priority defines the order in which
processes are entitled to be allocated CPU resources.
Accordingly, it

l A typical scheduler adjusts the priority of tlhe current
process by pushing it down the queue of processes by
a constant amount.

l schedules CPU resources to the process with the
smallest priority, which corresponds to the process
being at the head of the queue;

l increases the priority of a process each time it is allo-
cated CPU time, which can be viewed as putting the
process further down the queue; and

l decays all process priorities steadily so that one might
view all processes as slowly drifting toward the front
of the queue.

l Share pushes the current process down the queue by
an amount proportional to the usage and number of
active processes of the process’s owner, and inversely
proportional to the square of that user’s shares. Pro-
cesses belonging to higher usage (more active) users
are pushed further down the queue than processes
belonging to lower usage (less active) users. This
means that a process belonging to a user with high
usage takes longer to drift back up to the front of the
queue. (The priority needs longer to decay to the
point that it is the lowest.)

Share combines these activities with user-level sched-
uling in the following ways:

We also want users to be able to work at a rate pro-
portional to their shares. This means that the charges
they incur must be allowed to increase in proportion to
the square of the shares (which gives a derivative, or
rate of work done, proportional to the shares).

Decay of Process Priorities. The decay of process priori- The formula also takes account of the number of ac-
ties ages the processes so that those that have not had tive processes (processes on the priority queue) for the
the CPU achieve better and better (smaller) priority user who owns the current process. This is necessary
values. The value of t2 and K2 combined defines the since a priority increment that involved just usage and
rate at which processes age. We need to make t 2 small, shares would push a single process down the queue far
compared to t 1, because priority values change rap- enough to ensure that the user gets no more than his or
idly. In our VAX implementation, t2 is set at 1 second, her fair share. If the user has more than one active

which is 60 times the resolution of the scheduler. (On
the Cray, t2 is also 1 second.)

The rate at which processes age is affected by their
nice value. We note that Share preserves the approach
of the UNIX scheduler to nice: It assumes users nor-
mally want the best response possible (which corre-
sponds to a nice value of 0), but there are also times
when a user is happy to accept lesser response, which
they indicate in terms of a nice value that is a small
integer. (Its range is from 0, the default, to 19, which
gives the worst response.) We define the value of K2 as

K2 =
K2' + max-nice ’

where max-nice is the largest nice value (19). This
ensures that the priority of processes with nice set to
max-nice is decayed by K2" every t2 seconds, and
that the priority of processes with nice set to o is de-
cayed somewhat faster. The values of K2 ’ and K2 n
must be large enough to ensure that priorities are well
spread and remembered long enough to prevent large
numbers of processes from having 0 priority.

Priority Adjustment. At the finest resolution of the
scheduler, t 3, the current process has its priority in-
creased by the usage and active-process count of the
user who owns the process. (The scheduler resolution,
t 3, is a sixtieth of a second on the VAX version, and
one hundredth of a second on the Cray.) Typically,
schedulers increase the priority by a constant. Intui-
tively, one might view the difference between Share
and typical schedulers as follows:

40 Communications of the ACM January 1988 Volume 31 Number 1

Computing Practices

process, we need to penalize each of them to ensure
that the user’s share is spread between them, and we
do this by multiplying the priority increment by the
active-process count. This is the crux of the Share
mechanism for making long-term usage, over all re-
sources that attract charges, affect the user’s response
and rate of work.

Although the model we have described may be ade-
quate for implementations where process priorities
have a large range of values, on the machines where
we have implemented Share, process priorities are
small integers and cannot be used directly. We need to
normalize the share priorities into a range that is appro-
priate for real process priorities. In addition, where the
range in priority values is quite small, we need to en-
sure that the normalization procedure does not allow a
single very large Share priority value to reduce all
other normalized priorities to 0. To avoid this, we de-
fine a bound on the Share priority. This is calculated in
the process-level scheduler as shown in Figure 3. K4 is
determined by the largest priority available to the low-
level scheduler. Note that the Share priority bound
does, somewhat unfairly, favor very heavy users. They
still suffer the effect of their slowly decaying large
usage, however, and are still treated more severely
than everyone else. On the other hand, it helps prevent
marooning.

Process Activation. At each scheduling event, Share up-
dates the current user’s charges by the costs associated
with the event and selects the lowest priority process to
run. This aspect of Share is typical of CPU schedulers.

Find greatest Share priority for normalization:

max-priority = 0.

For each process,

if

max-priority
< priority PlOCBSS S priority-bound,

then
max-priority = prior3.tyProcesS.

For each process, scale priority to appropriate range:

if

priority Qroceee 5 max-prlorlty.

then

normalized-priority,.,,,,,
.

= (K4 - 1) X
prlor*typrocess
max-priority'

normalized-priority,.,,.,. = K4.

FIGURE 3. Priority Normalization

Multiple Processors
Multiprocessor machines do not affect the implemen-
tation provided the kernel still uses a single priority
queue for processes. The only difference is that pro-
cesses are selected to run from the front of the queue
more often, and incur charges more frequently, than if
only one processor were present.

Efficiency
The implementation shown in Figure 2 should only be
seen as a model of the actual code. For efficiency, some
of the calculations shown at the level of the process
scheduler are actually precalculated elsewhere.

Edge Effects
In general, it is important to avoid edge effects on
scheduler behavior. In particular, if a user enters the
system with zero usage they could effectively consume
100 percent of the resources, at least for one cycle of
the user-level scheduler. Since this is a comparatively
long time [a few seconds), this would be unacceptable.
We now examine why this undue favoritism might oc-
cur and how Share deals with the problem.

First, we define the relative proportion of the ma-
chine due to a user by virtue of the allocation of shares:

machine-proportion-due,,,,
shares,,,,

= ~~~y"e-"sers ,-hares, .

This defines the proportion of the machine due to a
user in the short term. Now we can also predict the
short-term future proportion of the machine that a user
should get by virtue of their usage:

near-futuredachine-proportion,,,,
shares?,,,/usage,,,,

= yc;Iye-“sers shares:/usage,.

If everyone is getting their fair share, these two for-
mulas will give the same value for each active user.
Indeed, Share works to push these two formulas to the
same value for each user. In the case where a user has
zero usage (or near zero usage), we need to interfere to
prevent that user from being unduly favored (while
other users are ignored]. We do this by altering the
usage value in the user-level scheduler as shown in
Figure 4. We have set K5 to 2.

System Processes. Processes that run in support of the
operating system must be given all the resources they
need. In effect, system processes are given a 100 per-
cent share of the resources, although it is assumed they
will not use it most of the time. Share is intended to
arbitrate fairly between users, after the system has
taken all the resources it needs.

Marooning. It is possible for a user to achieve a very
large usage during a relatively idle period. If new users
then become active, the original user’s share becomes
so small that they are unable to work effectively. This

January 1988 Volume 31 Number 1 Communications of the ACM 49

FIGURE 4. Avoiding Edge Effects

user’s processes are effectively marooned with insuffi-
cient CPU allocation even to exit. Marooning is avoided
by the combination of bounds on the normalized form
of priority, the process priority decay rate, and the
granularity of the process-level scheduler.

HIERARCHICAL SHARE
Although the simple version of Share we have de-
scribed served well for several years, it was inadequate
for a machine that is shared between organizations or
independent groups of users. For instance, consider a
situation where organizations need to share a machine
not only between users, but also at the organizational
level. Share as described above is fine for this situation
provided we can make the following assumptions:

(1)

(2)
(3)

(4)

The total allocation of shares for each organization
is strictly maintained in the proportions that the
machine split is made. For example, if a machine
is to be split equally between two organizations,
the total shares for each organization must be the
same.
The users in each organization are equally active.
K 1 is acceptable at the organizational level and
constant for all users.
Costs for resources are consistent for all users, and
the other parameters of Share, including K2, t 1,
t 2, and t 3, are accepted for all users.

Let us now consider how the simple Share is adjusted
to account for each of these factors.

Shares in a Hierarchical Share Scheduler
It would be impractical to require that the total shares
for each organization be maintained at a fixed value.
This would mean the arrival of a new user would re-
quire adjustments to the shares of all users in that orga-
nization. This would be a serious problem that might
rule out organizational sharing with the simple form of
Share.

So that each organization appears to be operating
their own machine, we allow that users be allocated
shares just as in the simple Share. We cannot, however,
directly compare such shares across organizations. We
need to convert them to a comparable measure. The
approach we take is to calculate each user’s machine
share, the proportion of the machine that their alloca-

tion of shares make them eligible to receive. We start at
the root of the Share hierarchy tree and convert the
shares allocated to each child node into their machine
share, using the following formula:

m-share.,,,
= m-share,,,,,t

x cE1y' '"95
sharesnode

shares, + share,,,,

This calculation is repeated recursively down the hier-
archy tree until the m-s hare of each node has been
calculated, and m-share is then used instead of
shares is the user-level scheduler.

Varying Levels of Activity
It is not reasonable to assume that users are equally
active at all times. This means that, as users log in and
out, they alter the m-share value of all users in their
scheduling group (and if they are the first user in their
group to log in, or the last to log out, they alter the
m-share of all users who descend from their grand-
parent node in the hierarchy tree). In terms of the oper-
ation of Share, this means that some m-share values
will usually be recalculated at each log in or log out.
This poses a small but acceptable overhead.

Share acts fairly under full load, but a light load can
distort it. Consider, for example, the situation depicted
in Table I. This shows a case where there are two
organizations A and B with an equal share of the re-
sources, where organization A has one active user, Al,
and organization B has two users, Bl with a large share
and inactive, and BZ with a small share running a CPU-
bound process. The effective share of the two active
users, Al and BZ, differ by a factor of 10, and yet the
scheduler should divide the resources equally between
the two groups, A and B.

TABLE 1. User Activity that Distorts Group Shalring
j’ ‘s-‘,. (%j_. < j_ ,.,a ~. .,‘. .&p/al-e Description of mer activity

Organization A
User Al 0.50 Active

Organization 6
User 61 0.45 Logged in but inactive
User B2 0.05 CPU bound

50 Communications of the ACM]anuay 1988 Volume 31 Number 1

First, we define the relative proportion of the ma-
chine due to a group by virtue of its allocation of
shares:

machine-proportion-due,,,,,

sharesgroup
= ~;~;l-Vo'JPs shares, .

Now we can also calculate the actual share of resources
consumed by a group for the most recent scheduling
period:

actual-machine-proportion,,,,,

chargesgroup

If each group is getting its fair share, these two formulas
give the same value for each active group. In the case
described above, we need to interfere if group B [and
hence user B2) is to get its fair share. This is done in
the user-level scheduler by reducing the costs of re-
sources consumed by a group that is getting less than a
certain amount of its share (see Figure 5). This de-
creases the usage for active users in the group and
allows them to increase their share and the group’s
share. This calculation applies only to the dynamic
usage value: The long-term usage for the user incurs
full costs, ~6 is set to allow a group’s allocated share to
fall below its effective share by some small amount. We
chose 10 percent.

Differential Decay Rates for Usage
We have shown that the simple Share used the same
rate of decay for the usages of all users. It follows that
users within an organization should have the same
usage decay rate. We do not need to do this between
organizations. This can be illustrated in terms of the
simple Share system operating in the university context
where it is deemed appropriate to a set a three-day
half-life for usage in the case of a machine used by
undergraduates, but for the research-support machine,
an acceptable half-life value is 12 hours. When differ-
ent organizations share a machine, the right to define
different decay rates may be important.

In practice, we have not dealt with this problem.
There is a simple administrative solution if the organi-
zations can agree to a constant decay rate within each
organization and negotiate the organization machine

Fw each group (descend hierarchy),

it

Computing Practices

share allocations to take this into account. An alternate,
more complex approach, is a dynamic correction for
differential decay rates by keeping two forms of usage:
one for each user as we currently do, and another for
each organization with a common decay rate applied to
all organizational usage values. Then we could make a
further adjustment to each group’s m-share value
(and hence each user’s) to account for any imbalances
in the group-level usage value.

Other Parameters
We have not allowed for variability per group or per
user in any of these.

EVALUATION OF SHARE
Some parts of the design we have described were eval-
uated [Z] before implementation in 1985. This evalua-
tion with synthetic loads was mainly intended to guide
the development of a computational model for the
scheduler before it was put into active service on a
heavily used machine. This preliminary work
smoothed the introduction of the scheduler.

Once Share had been put into service, we used two
forms of evaluation. First, we used several monitoring
tools to watch it in operation. These have also been
useful for administration and users. They indicate

l resource usage between groups: shows the effective
share and actual resource consumption by group;

l resource usage between users: shows the actual re-
source consumption for every user;

l effective share distribution: plots a graph of users versus
normalized usages; a non-Poisson distribution prob-
ably indicates problems, such as a class of users (not
necessarily in the same group) that are consuming a
disproportionately large amount of the resources;

l resource event frequency: provides feedback on active
resource consumptions;

l long-term charges: provides details on the share of the
resources between groups and users over a long time
period.

In addition, we have run synthetic tests with pure CPU
bound processes, to check that Share preserves the
proper relationships between users with different
shares, usage, and number of processes.

In view of the difficulties of the creation of valid

actual-machine-proportion,,,,, < K6 X machine-proportion-duegzOUP,

then, for each user in the group (descend hierarchy),

chargesuse, = charge&,, X
actual-machine-pxoportion,,,,,

~6 X machine-proportion-due,ro,,'

January 1988 Volume 31 Number I

FIGURE 5. Group Adjustment

Communications of the ACM 51

Computing Practices

simulation models and synthetic loads [4], we consider periods of reduced response. Although this facility is
the users’ reactions to Share in real operation the most only necessary on rare but critical occasions,4 it is an
important evaluation of the system. attractive benefit of Share.

DESIGN GOALS

Design Goal: That It Be Fair

Design Goal: That It Should Deal Well with Peak
Loads

We aimed to achieve this goal in terms of a secondary
goal: that users be allocated shares that defined their
relative machine share and that users getting more
than their machine share should be penalized with
poorer response. On simple tests with synthetic jobs,
we observed that Share met this design goal [Z]. More
important, however, users deemed the scheduler to be
treating them fairly.

Even with the simple, nonhierarchical Share, we
have observed a number of situations where Share has
dealt with potentially disastrous situations to the satis-
faction of most users. For example, in our student envi-
ronment, we allocate shares to students on the basis of
the relative machine share they should need. If a class
is given an assignment that demands significantly more
machine resources, only the students in that class will
find the machine slow. With a conventional scheduler,
everyone suffered in this situation. Share has proved
useful for this problem in that the source of the prob-
lem is patently obvious, as is the identity of the person
responsible for creating it.

In our design environment, one of the classic causes of
a peak load is the deadline for an assignment. Because
we stagger the deadlines for different classes, one class
of students may try to work harder as the deadline
approaches. In pre-Share days, everyone suffered, and
the machine would grind to a halt. With Share, the
individuals in the class that is working to the deadline
are penalized as their usage grows. Meanwhile, other
students get good response and are often unaware of
the other class’s deadline. In effect, under heavy load,
heavy users suffer most.

A similar example, with the hierarchical Share sys-
tem, involved a user who initiated a long running CPU-
bound process. Share ensured that users in other
groups were unaffected by the problem.

Design Goal: That It Should Encourage Load
Spreading
The most direct observation of Share’s load-spreading
effect is that users do give up when they get poor re-
sponse, especially when it is bad relative to other users.
We would like to report that our students now start
their assignments early and work on them steadily: this
unfortunately is not the case. Given that one class
deadline cannot disrupt another, however, allows stu-
dents to plan their work and enables them to predict
that they will get reasonable response, if they work
steadily.

Design Goal: That It Be Understandable
Figure I indicates the user’s view of Share. Our users
appear to be able to appreciate this view, and interpret
relatively poor response as an indication they have ex-
ceeded their machine share. They also become alert to
the relative costs of various processes they create since
it is directly reflected in their relative response from
the machine.

Design Goal: That It Be Predictable
Each user’s personal profile lists their effective machine
share, that they quickly learn to interpret. Users speak
of a certain machine share as being adequate to do one
task, but not another.

Design Goal: That It Should Give Interactive Users
Reasonable Response
We can ensure this goal by combining Share with a
check at log-in time that only allows users to log in if
they can get reasonable response. In practice, we have
not utilized this facility unless there is a very large
number of users (over 70 on the VAX). Those who have
high usage do get poor response, and if the machine is
heavily loaded, the poor response may well be intolera-
ble for tasks such as using a screen editor. We view this
as an inevitable consequence of Share being fair to
users whose fair share is really very small.

In general, Share does ensure good throughput for the
small processes that typify interactive use.

Design Goal: The Scheduler Should Accommodate
Special Needs
Share accommodates situations where brief periods of
excellent response are guaranteed for individuals or
groups of users. One simply allocates a relatively large
number of shares to the relevant user’s (or group’s)
account for the duration of the special needs. This is a
simple procedure that the system administrator can set
up to run at the required times.

Design Goal: No Process Should Be Postponed
Indefinitely
Since Share allocates some resources to every process,
this goal is also achieved.

Design Goal: That It Should Be Inexpensive to Run
Since most of the costly calculations are performed in-
frequently (in the user-level scheduler), Share creates
only a small overhead relative to the conventional
scheduler.

Clearly, this sort of activity disrupts other users as
they have to share a smaller part of the machine than
usual. In fact, we observe that the favored users may
only make major demands of the machine for very
brief periods. Typically, other users suffer only small

THE ESSENTIAL SHARE
Our description mirrors Share as we have implemented
it. The aspect that is essential to Share is that it shares

‘These include demonstrations of software to funding agencies and, in the
teaching context, practical examinations.

52 Communications of the ACM Ianuary 1988 Volume 31 Number 1

Computing Practices

resources fairly between users, rather than just pro-
cesses. Other aspects can be altered within the Share
framework.

In particular, several parameters are defined by ad-
ministrative decisions and need to be set according to
the particular requirements of each machine. For ex-
ample, we set the constant Kl to make usage decay
quite slowly: Its half-life has ranged from a few hours to
three days. It could equally be of the same order as the
process priority decay rate. Since the function of usage
is to ensure that process priorities reflect the total activ-
ity of the user who owns them, it can do that equally
well with a short half-life if that is what is required. To
date, we have used Share in environments where a
long-usage half-life has been regarded as fair.

Other such parameters that can be altered include
the various constants, the frequency with which the
user level and process schedulers run, and the way
charges are calculated. On the last of these, charges
should be selected to reflect the administrator’s view of
the costs of each resource. This may well change in
light of monitoring information or with changes in the
hardware configuration.

Similarly, the time variance of charges could be al-
tered. In our experience, it seems best to have fixed
costs at particular times of day so that users can plan
their work in terms of these. In other situations, it may
be appropriate to take some other approach. Cost could

be dynamically altered on the basis of load so that the
machine would become more costly to use at peak
times, whenever they occurred, or one could have
fixed costs at all times. Such changes should be taken
with care. For example, the suggestions that costs
change dynamically may, at first glance, seem attrac-
tive and sensible. Nevertheless, it violates the principle
of predictability, a sacrifice that should not be taken
lightly.

CONCLUSION
Users perceive the scheduler as fair in practice, and
tend to blame poor response more on their past usage,
rather than on system overloading. The strengths of
Share are that it

is fair to users and to groups, in that users cannot
cheat the system, and groups of users are protected
from each other;
gives a good prediction of the response that a user
might expect;
gives meaningful feedback to users on the cost of
various services; and
helps spread load.

Share has proved useful in practice, both in teaching
and research contexts. Other contexts are possible,
such as sharing access to a file server to prevent any
one client from monopolizing the service.

Appendix

Below is sample output from some of the monitoring utilities. They illustrate some of the information
available to users and system maintainers. The actual displays have been edited to give fictitious names to
users and groups.

Display from a Hierarchical Share System on a DEC-VAX

Figures 6 and 7 have hash signs to represent resource consumption, and I to show aIlocated share.

Group
System
other
idle
support
tutor
staff
ma int
office
pgrad
hons
prw
daemon

1P
Total =>

No.
1
1
1
1
5
6
2
2
4
4
6
1
1

35

%Rate Wed Ott 14 16:48:08 1987

1.0 # I
0.0 #I I
0.0 # I
O.O# I I

15.2 ###I#### I
0.0 # I I
0.0 I I
0.0 # I I

24.3 #######I#### I
0.0 #I I

57.8 #######I##################### I
1.6 ## I I
0.0 I I

FIGURE 6. A Display of the Rate of Use by Groups on a VAX

lanuary 1988 Volume 31 Number 1 Communications of the ACM 53

Computing Practices

idle
Sarah
dennis
j oyce
rebecca
bob
gv3
anne
talia
plot
john
irene
arthur
1P
linda
jeannette
piers
tim
gretchen
ray
Steve
judy
lina
Susan
ray
daemon
jason
jans
jant
allan
ian
janet
josef
peter

Shares: 0
Shares: 10
Shares: 10
Shares: 10
Shares: 100
Shares: 10
Shares: 10
Shares: 10
Shares: 10
Shares: 10
Shares: 100
Shares: 10
Shares: 50
Shares: 3
Shares: 10
Shares: 200
Shares: 100
Shares: 100
Shares: 50
Shares: 100
Shares: 50
Shares: 50
Shares: 200
Shares: 50
Shares: 100
Shares: 12
Shares: 50
Shares: 50
Shares: 50
Shares: 50
Shares: 50
Shares: 50
Shares: 50
Shares: 50

Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:
Share:

0%
0.875%
0.984%
0.309%

3.94%
0.984%
0.984%
0.875%
0.984%

7.87%
3.09%

0.875%
1.18%
2.36%

0.875%
3.54%
3.09%
3.09%
1.18%
3.09%
4.37%
3.94%
3.54%
3.94%
3.09%
9.45%
3.94%
3.94%
3.94%
3.94%
3.94%
3.94%
3.94%
3.94%

E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-Share:
E-Share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:
E-share:

0%
0%
0 %

0.0725%
0.112%
0.155%
0.158%
0.191%
0.229%
0.238%
0.684%

1.01%
1.08%
1.19%
1.21%
1.27%
1.34%
1.86%
2.26%
3.15%
4.03%
4.26%
4.26%
4.53%
5.57%
6.04%
6.59%
6.59%
7.25%
7.25%
7.25%
7.25%
7.25%
8.05%

Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:
Usage:

54 Communications of the ACM

FIGURE 7. A Display of the Scheduling Information for Users on a VAX

]anuary 1988 Volume 31 Number 1

Computing Practices

Acknowledgments. This work was the product of
much discussion over a long period. In typical aca-
demic tradition, many people had a lot to say about the
changes Share brought to their lives. Many of those
comments were very useful. In addition, flaws in the
initial design were identified by several people to
whom we are grateful.

The first versions of Share [i’, 131 grew from the ideas
described by Larmouth [ll, 121 and the basic work by
Hume [6]. Chris Maltby played a critical role in the
implementation and monitoring of the first version.
Sandy Tollasepp [18] helped to analyze the perfor-
mance of the first version, and John Brownie, the sec-
ond. Carroll Morgan’s suggestions were the basis for
revising the whole approach of the first version of
Share, and they made for the simplicity of the current
version. Rob Pike and Allan Bromley independently
identified an error in an earlier form of the Share
normalization procedure. Glenn Trewitt suggested the
current form of taking account of the user-supplied
nice value.

REFERENCES
1. Bach, M.j. The Design of the UNIX Operating System. Prentice-Hall,

En&wood Cliffs, N.J., 1986.
2. Brownie, 1. Analysis and simulation of Share systems. Honors thesis,

Computer Science Dept., Univ. of Sydney, Australia, 1984.
3. Coffman. E.G.. Ir., and Kleinrock. I,. Computer scheduling methods

and their countermeasures. In Proceedings of fhe Spring Joint Com-
puter Conference, vol. 32 (Atlantic City. N.I.. Apr. 30-May 2). AFIPS
Press. Reston. Va., 1968, pp. 11-21.

4. Heidelberger. P., and Lawnberg. S.S. Computer performance evalua-
tion methodology. IEEE Trans. Comput. C-33, 12 (Dec. 1984), 1195-
1220.

5. Henry. G.]. The fair share scheduler. Bell Syst. Tech. J. 63, 8, Part 2
(Oct. 1984). 1845-1857.

6. Hume. A. A Share scheduler for Unix. AUUG News]., Australian
UNIX User’s Group, Sydney. Australia, 1979.

7. Kay, 1.. Lauder P., Maltby, C.. and Tollasepp S. The Share charging
and scheduling system. Tech. Rep. 174. Basser Dept. of Computer
Science. Univ. of Sydney, Australia, May 1982.

JOURNAL
OF THE

ASSOClATlON
FOR

COMPUTlNG
MACHINERY

Subscriptions $l&OO/year
for ACM members;

$7!%00/year for nonmembers.

(Members please include
member #)

8. Kleijnen, A. 1. V. Principles of computer charging in a university-
type organization. Commun. ACM 26 11 (Nov. 1983). 926-932.

9. Kleinrock. L. A continuum of time-sharing scheduling algorithms.
In Proceedings of the AFtPS Spring /oint Computer Conference. vol. 36
(Atlantic City, N.J., May 5-7). AFIPS Press. Reston. Va.. 1970.
pp. 453-458.

10. Lampson, B.W. A scheduling philosophy for multiprocessor systems.
Commun. ACM II. 5 (May 1968). 347-360.

11. Larmouth. 1. Scheduling for a share of the machine. Softw. Pratt.
Exper. 5. 1 (Ian. 19751, 29-49.

12. Larmouth. J. Scheduling for immediate turnaround. Soffw. Pracf.
Exper. 8. 5 (Sept.-Oct. 1978). 559-578.

13. Lauder, P. Share scheduling works! AUUG News. 1980.
14. McKell. L.1.. Hansen. J.V., and Heitger, L.E. Charging for computing

resources. ACM Comput. SW-U. II, 2 (June 1979). 105-120.
15. Newbury. J.P. Immediate turnround-An elusive goal. Sofful. Pracf.

Exper. 12. 10 (Oct. 1982) 897-906.
16. Nielsen, N.R. The allocation of computing resources-Is pricing the

answer? Commun. ACM 13. 8 (Aug. 1970). 467-474.
17. Ritchie. D.M.. and Thompson, K. The UNIX timesharing system. Bell

Syst. Tech. J. 57, 6 (July-Aug. 1978). 1905-1929.
18. Tollasepp, S. The SHARE resource allocation system. Honors thesis,

Computer Science Dept., Univ. of Sydney. Australia. 1981.
19. Woodside. C.M. Controllability of computer performance tradeoffs

obtained using controlled-share queue schedulers. IEEE Trans. Softw.
Eng. SE-12. 10 (Oct. 1986), 1041-1048.

CR Categories and Subject Descriptors: C.4 [Computer Systems
Organization]: Performance of Systems-design studies: performance
attributes; reliability, availability, and serviceabilify; D.4.1 [Operating
Systems]: Process Management-scheduling

General Terms: Performance
Additional Key Words and Phrases: User scheduler. fair share sched-

uler, hierarchical CPU scheduler, charging. resource allocation

Received 4/87: accepted 9/87

Authors’ Present Address: J. Kay and P. Lauder. Baser Dept. of Corn.
puter Science, Madsen Building, F09. University of Sydney. N.S.W..
Sydney 2006. Australia.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computjng Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

An excellent source to
information on computer theory
and research in.. .
l Algorithm & complexity theory
l Artificial intelligence
l Combinatorics & graph theory
l Computer organization & design
l Systems modeling & analysis
l Database theory & structures
l Distributed computing
l Formal languages
l Computational models
l Numerical analysis
. Operating systems and research
l Programming languages &

related methodology
l Computational theory

Published four times a year
(ISSN 0004-5411)

Write for an order form and your
ACM Publications Catalog to:

m PRE

Catherine Yunque,
ACM,
11 West 42nd Street,
New York, NY 10036

January 1988 Volume 31 Number 1 Communications of the ACM 55

