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Central-processing-unit schedulers have traditionally allocated resources 
fairly among processes. By contrast, a fair Share scheduler allocates 
resources so that users get their fair machine share over a long period. 

A FAIR SHARE SCHEDULER 

J. KAY and P. LAUDER 

One of the critical requirements of a scheduler is that it 
be fair. Traditionally, this has been interpreted in the 
context of processes and has meant that schedulers were 
designed to share resources fairly between processes 
[3, 9, lo]. More recently, it has become clear that 
schedulers need to be fair to users rather than just pro- 
cesses. This is reflected in work such as [5], [ll], [12], 
[IS], and [19]. 

The context for the development of Share was that of 
the principal teaching machine in a computer science 
department. We had a large user community, domi- 
nated by 1000 undergraduates in several classes, as 
well as a staff of about 100. Our load was almost exclu- 
sively interactive and frequently had extreme peaks 
when major assignments were due. On a typical day, 
there were 60-85 active terminals, mainly engaged in 
editing, compiling, and (occasionally) running small- 
to-medium Pascal programs. All this activity was sup- 
ported by a DEC VAX 11/780 running AUSAM, a local 
version of UNIX@ [17] that is oriented toward a student 
environment. 

UNIX provides a fairly typical scheduler [l]. It was 
inadequate in our environment, however, for a number 
of reasons: 

(1) It gave more of the machine to users with more 
processes, which meant that users could easily in- 
crease their share of the machine simply by creat- 
ing more processes. 

(2) It did not take into account the long-term history 
of a user’s activity. Thus, if a student used the 

UNJX is a registered trademark of AT&T Bell Laboratories. 

0 1!188 ACM 0001.0782/88/0100-0044 $1.50 

(3) 

(41 

machine heavily for approximately two hours, the 
same machine share was allocated as to a student 
who had not used the machine for some time. 
When one class had an assignment due and all the 
students in that class wanted to work very hard, 
everyone, including other students and staff, suf- 
fered with poor response. 
If someone needed good response for activities like 
practical examinations or project demonstrations, 
it was difficult to ensure they would get that re- 
sponse without denying all other users access to 
the machine. 

The first three of these manifest the inequitable way 
the process scheduler affects users. 

On many systems these problems are partially ad- 
dressed by the charging mechanism [14, 161. Typically, 
charging systems involve allocation of a budg,et to each 
user, and as users consume resources, they are charged 
for them. We might call this the fixed-budget model, in 
that each user has a fixed-size budget allotment. Then, 
as the resources are used, the budget is reduc:ed, and 
when it is empty, the user cannot use the machine at 
all. A process can get a better machine share if the user 
who owns it is prepared to pay more for the resources 
used by that process. The fixed-budget model. can be 
refined so that each user has several budgets, each as- 
sociated with different resources. 

We control allocation of some resources wi-th a fixed- 
budget charging mechanism. In particular, we use this 
approach in these cases: 

(1) For resources such as disk space, each user has a 
limit.’ 

‘If a user exceeds this limit, the user is warned at the time and then at each 
log in for three log ins. After that, the user is not allowed to log in. 
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Resources such as printer pages are allocated to 
each user as a budget that has a tight upper bound 
and is updated each day.’ 
Daily connect limits are available to prevent indi- 
viduals from exceeding their limit on the machine 
within a single day. 
Weekly connect limits are sometimes used to pre- 
vent students from spending too much time on 
computing (compared to other subjects), and to en- 
courage students to work steadily on assignments 
from the first week they are set, right through to 
the last week. This, however, commonly has the 
effect of denying students any machine access near 
the assignment deadline, even though the machine 
is lightly loaded and students would like more ma- 
chine access to finish and improve their programs. 

There are also other utilities to help allocate re- 
sources, including a terminal-booking program that al- 
lows students to reserve a terminal at particular times 
each week. 

All of these measures helped control consumption 
of resources, but did not deal with the problems of 
central-processing-unit (CPU) allocation we described 
earlier. It was for these reasons that we developed the 
Share scheduler. Although Share was motivated by our 
particular problems in a student environment, it 
equally serves the needs of any user community that 
shares a machine that is not operating for financial 
profit. Indeed, Share has been implemented in a re- 
search environment with many users from different or- 
ganizations that have chosen to share the capital and 
running costs of a machine.3 

To date, Share has been used exclusively to allocate 
CPU time, though it takes into account the consump- 
tion of all resources. We realize that Share may be 
applicable to the scheduling of resources other than 
CPU, but for simplicity, this article concentrates on 
CPU scheduling. 

OBJECTIVES OF SHARE 
The only way many systems link charging and schedul- 
ing is where users can specify the processes they agree 
to be charged more for, in return for being given prefer- 
ence in scheduling. Indeed, UNIX offers this kind of 
mechanism in nice, an attribute of a process that a user 
can adjust to alter its scheduling priority. On an in- 
house machine, this approach is adequate. A more 
natural approach, however, is to regard each user as 
having an entitlement to a fair share of the machine, 
relative to other users. Then, the task of the scheduling 
and charging systems must ensure that 

l individuals cannot get more than their fair share of 
the machine in the long term, and 

l the machine can be well utilized. 

’ For example, a user might have a printer page bound of 10 pages and a daily 
increment of 2 owes. This means the user starts with a budget of 10 oaees: . - . I 
if, say. 3 pages are printed in one day, the budget for the rest of the day is 
7 pages. and provided no more printing is done that day, the budget at the 
beginning of the next day will be 9 pages. 

’ A Cray X-MP at AT&T Bell Laboratories. 

In addition, we extended the notion of fair shares to 
cover groups of individuals so that Share can allow the 
sharing of a machine between independent organiza- 
tions. 

To achieve fair sharing and be practicable for the 
individual and independent groups that share the ma- 
chine, the objectives of Share were that it 
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seem fair; 
be understandable; 
be predictable; 
accommodate special needs: Where a user needs 
excellent response for a short time, it should per- 
mit this with minimum disruption to other users; 
deal well with peak loads; 
encourage load spreading; 
give interactive users reasonable response; 
give some resources to each process so that no 
process is postponed indefinitely; and 
be inexpensive to run. 

USER’S VIEW OF SHARE 
Essentially Share is based on the principle that every- 
one should be scheduled for some resources 

l according to their entitlement, 
l as defined by their shares, and 
l as defined by their resource usage history. 

This is illustrated in Figure 1, which shows that a user 
can expect poorer response if the user has had his or 
her fair machine share. This, in turn, gives other users 
a chance to get their fair share. 

A user’s shares indicate his or her entitlement to use 
the machine. The more shares a user has, the greater 
the entitlement. This should operate in a linear fashion 
so that, if user A has twice as many shares as user B, 
then in the long run, user A should be able to do twice 
as much work as user B. 

Every user has a usage, which is a decayed measure of 

Each user 

Has’ ’ Has 

/ b 

Shares 

Define Defines 

4 4 

User’s machine 
share entitlement 

User’s actual 
machine share 

Usage 

Share adjusts user response to make 
actual machine share and entitlement equal 

FIGURE 1. A User’s View of Share 
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the work the user has done. The decay rate is defined by 
an administrative decision that determines how long a 
user’s history of resource consumption affects his or her 
response. For example, in its first implementation in 
a student environment, the decay rate was set so that 
usage had a half-life of three days to encourage stu- 
dents to spread their machine use over the week. 

not need fast response for a process will use nice out 
of generosity. In our environment we felt that it was 
worthwhile to give users an incentive to use nice, so 
we reduced the costs charged for processes with larger 
nice values. 

Although it is normal for schedulers to use decayed 
CPU usages, Share’s use of decayed resource usage in 
charging is a departure from traditional approaches. 
Where a machine is solely for in-house use, the only 
need for a raw (undecayed) resource consumption tally 
is to monitor machine performance and throughput, 
and to observe patterns of user behavior. 

Finally, the charges that Share uses are defined by the 
relative costs of different resources. For example, we 
associate a charge with memory occupancy, another 
with systems calls, another with CPU use, and so on. 
Note that this is another difference between Share and 
conventional schedulers that define a proces.s’s sched- 
uling priority only on the process’s consumption of 
CPU time. In Share, CPU scheduling priority is affected 
by total resource consumption. 

The decayed usage is also normalized by the user’s 
shares. This might look as though it makes the machine 
less expensive to users with more shares. In essence, 
Share attempts to keep the actual machine share defined 
by normalized usage the same as the machine entitlement 
defined by shares. From the user’s point of view, Share 
gives worse response to users who have had more than 
their fair share so that they cannot work as much as 
users who have not had their fair share. So users see 
that, as their normalized usage increases, their response 
becomes worse. (This assumes allowance is made for 
machine load.) We provide a simple command that 
displays a user’s profile that includes their usage and 
the machine share they can expect. 

In addition, we set charges at different levels at dif- 
ferent times of the day. This is another administrative 
decision. For example, during the time the university is 
in session, we charge a peak rate during normal work 
hours, somewhat less for the hours before and after, 
and much less at off-peak hours. 

Note that Share represents a radical departure from 
the traditional approaches to charging as described in 
[&I]: “Prices should not be changed too frequently, since 
stability is one of the accepted requirements of a charg- 
ing system.” 

This approach contrasts strikingly with conventional 
charging and scheduling systems that schedule pro- 
cesses equally, provided the user who owns them has a 
nonempty budget. In the fixed-budget model, the users 
who consume their fair share, by emptying their bud- 
gets, do not get any available resources. In the extreme 
case, there may not be any users because everyone who 
wants to use the machine has empty budgets. For an in- 
house machine, this does not make sense, and can gen- 
erate substantial administrative overheads as users seek 
extra allocations. 

We agree that users need to understand the charging 
system and see it as stable, but we argue tha.t this does 
not require constant behavior. It can also be achieved 
by behavior that changes steadily, as in Share, where 
response steadily degrades as a user’s resource con- 
sumption increases relative to other users. 

The number of shares allocated to a user is, essen- 
tially, an administrative decision. In a situation where 
independent organizations share a machine, however, 
the shares that should be allocated to individual users 
depend both on the entitlement that their organization 
has and the individual’s entitlement within the organi- 
zation. For simplicity, we describe Share first in terms 
of a simple situation where there are no independent 
organizations involved: All users’ shares are simply de- 
fined to indicate their right to work compared to other 
users. We deal with the more complex situation where 
the combined usage of groups of users must be consid- 
ered, in the description of hierarchical Share. 

We must emphasize that the administrative decisions 
are very important to Share’s fairness. For example, we 
have just noted that we charge less at off-peak times 
and this seems to help spread the machine load. An- 
other important factor in setting this policy, however, is 
that users consider it fair that they be charged less for 
the inconvenience of working after normal hours. Some 
of the administrative decisions are not easy though. 
The fixed-budget model has the advantage that one can 
easily supplement empty budgets and the initial budget 
size may not be as critical. By contrast, in Share, the 
shares allocated define the right to do work so that, 
when we allocate each first-year student half the shares 
given to a second-year student, we are defining the 
relative amount of work we expect each to extract from 
the machine. 

Another factor in scheduling is the individual users’ 
rights to alter the relative scheduling priority of their 
processes. We have preserved the UNIX nice, a number 
in the range O-19 that a user can associate with a pro- 
cess. When users assign a nonzero nice value to a pro- 
cess, they indicate that poorer response is acceptable. 
The larger the nice value, the poorer the response. The 
way that this affects charging is another administrative 
decision: The name, nice, suggests that users who do 

OVERVIEW OF THE IMPLEMENTATION 
As one might expect, conceptually there are two main 
components, one at the user level and the other at 
the process level. 

User Level 
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At this point, Share computes the charges due to a user 
for the resources the user has consumed during the last 
cycle of the user-level scheduler. The charges are for 
all resources consumed and are lower at off-peak pe- 
riods. This part of the scheduler does not need to run 
frequently because usage generally changes slowly. 

Each user can get an estimate of their share of the 
machine by comparing their usage with that of all ac- 
tive users. Since this is a convenient and intuitive indi- 
cation of the response a user can expect, we provide a 
percentage estimate of the user’s machine share as part 
of the standard user profile information. 

Process Level 
The remainder of Share operates at the process level. 
Each process has a priority, and the smaller its value, 
the better the scheduling priority. We also introduce 
the term active process to describe any process that is 
ready to run, and at any point, the active process that 
actually has control of the CPU is called the current 
process. There are three types of activity at the process 
level: 

(11 

(2) 

(3) 

that associated with the activation of a new pro- 
cess; 
the regular and frequent adjustment of the priority 
of the current process; and 
the regular, but less frequent, decaying of the 
priorities of all processes. 

The first occurs in a number of situations, including 
times when a process relinquishes control of the CPU, 
times when the active process is interrupted for some 
reason, and at regular times when the scheduler usurps 
the currently active process to hand control to the low- 
est priority process that is ready to run. 

Computing Practices 

Process activation 

l Update costs incurred by the current process. 
l Select the process with lowest priority, and set it run- 

ning. 

Next is the adjustment to the priority of the current 
process, which defines the resolution of the scheduler. 
This ensures that the CPU use of the current process 
increases (worsens) its priority. 

Priority adjustment 

l Increase the priority of current process in proportion 
to the user’s usage, shares, and number of active 
processes. 

Finally, there is the regular decaying of all process 
priorities, which must be done frequently compared to 
the user-level scheduler, but with longer time intervals 
than the scheduler’s resolution. 

Decay of process priorities 

l Decay all process priorities, with slower decay for 
processes with nonzero nice values. 

DETAILED IMPLEMENTATION 
The implementation of Share is shown in Figure 2. The 
remainder of this section explains each component, in- 
cluding the setting of the various parameters (that can 
be altered as the system runs). 

Every t 1 seconds: User-level scheduling 

For each user, 

decay usage and update with costs incurred in last tl seconds: 

usage,,,, = usage,,,, X Kl + charges,,,,; 

reset cost tally: 

charges,,,, = 0. 

Every t 2 seconds: Decay of process priorities 

For each process, 
1 

PriofltYprccess = priority,,,,,,, X K2 X (niceprocess + K2'). 

Every t 3 seconds: Priority adjustment 

priority , 
= pr iOrltycur.ent-p.ocesa 

usage,,,,,,,,,,, X active-processescu,,en,u,e, 
swrent-process +- 

sharesfu,,,nt-u,,, 

At each scheduling event: Current process selection 

char9escurrenr-user = charges,u.,,nL,,,, + cost,v,ne 

Run process with lowest priority. 

FIGURE 2. Share Implementation 
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User-Level Scheduling 
The user-level scheduler is invoked every t 1 seconds. 
The value of t 1 defines the granularity of changes in a 
user’s usage as he or she uses the machine. Since usage 
is generally very large compared to the resources con- 
sumed in a second, t 1 can be of the order of a few 
seconds without compromising the fairness of the 
scheduler. The advantage of making t 1 reasonably 
large is that somewhat costly computations can be 
made at this level without prejudicing the time effi- 
ciency of Share. Our VAX implementation makes t 1 

four seconds, which is 240 times the scheduler’s resolu- 
tion. On the Cray, we have found that four seconds 
(400 times Share’s CPU charging resolution) is also 
acceptable. 

The first component of the user-level scheduler de- 
cays each user’s usage. This ensures that usages remain 
bounded and the value of the constant K 1 in combina- 
tion with t 1 defines the rate of decay. We generally 
consider the effect of K 1 in terms of the half-life of 
usage. In a student environment, we have used a half- 
life of three days. In other contexts, it has been much 
shorter, but generally on the order of several hours. At 
a conceptual level, this step is performed for all users. 
In fact, the effect of the calculation is computed as each 
user logs in, and the actual calculation need only be 
performed for active users. 

The next part of user-level scheduling involves up- 
dating the usage of active users by the charges they 
have incurred in the last t 1 seconds and resetting the 
charges tally. 

Process-Level Scheduling 
From this point on, we discuss the low-level scheduler 
that deals with processes. It operates in terms of the 
priority of each process. As is common practice in pro- 
cess schedulers, the priority defines the order in which 
processes are entitled to be allocated CPU resources. 
Accordingly, it 

l A typical scheduler adjusts the priority of tlhe current 
process by pushing it down the queue of processes by 
a constant amount. 

l schedules CPU resources to the process with the 
smallest priority, which corresponds to the process 
being at the head of the queue; 

l increases the priority of a process each time it is allo- 
cated CPU time, which can be viewed as putting the 
process further down the queue; and 

l decays all process priorities steadily so that one might 
view all processes as slowly drifting toward the front 
of the queue. 

l Share pushes the current process down the queue by 
an amount proportional to the usage and number of 
active processes of the process’s owner, and inversely 
proportional to the square of that user’s shares. Pro- 
cesses belonging to higher usage (more active) users 
are pushed further down the queue than processes 
belonging to lower usage (less active) users. This 
means that a process belonging to a user with high 
usage takes longer to drift back up to the front of the 
queue. (The priority needs longer to decay to the 
point that it is the lowest.) 

Share combines these activities with user-level sched- 
uling in the following ways: 

We also want users to be able to work at a rate pro- 
portional to their shares. This means that the charges 
they incur must be allowed to increase in proportion to 
the square of the shares (which gives a derivative, or 
rate of work done, proportional to the shares). 

Decay of Process Priorities. The decay of process priori- The formula also takes account of the number of ac- 
ties ages the processes so that those that have not had tive processes (processes on the priority queue) for the 
the CPU achieve better and better (smaller) priority user who owns the current process. This is necessary 
values. The value of t2 and K2 combined defines the since a priority increment that involved just usage and 
rate at which processes age. We need to make t 2 small, shares would push a single process down the queue far 
compared to t 1, because priority values change rap- enough to ensure that the user gets no more than his or 
idly. In our VAX implementation, t2 is set at 1 second, her fair share. If the user has more than one active 

which is 60 times the resolution of the scheduler. (On 
the Cray, t2 is also 1 second.) 

The rate at which processes age is affected by their 
nice value. We note that Share preserves the approach 
of the UNIX scheduler to nice: It assumes users nor- 
mally want the best response possible (which corre- 
sponds to a nice value of 0), but there are also times 
when a user is happy to accept lesser response, which 
they indicate in terms of a nice value that is a small 
integer. (Its range is from 0, the default, to 19, which 
gives the worst response.) We define the value of K2 as 

K2 = 
K2' + max-nice ’ 

where max-nice is the largest nice value (19). This 
ensures that the priority of processes with nice set to 
max-nice is decayed by K2" every t2 seconds, and 
that the priority of processes with nice set to o is de- 
cayed somewhat faster. The values of K2 ’ and K2 n 
must be large enough to ensure that priorities are well 
spread and remembered long enough to prevent large 
numbers of processes from having 0 priority. 

Priority Adjustment. At the finest resolution of the 
scheduler, t 3, the current process has its priority in- 
creased by the usage and active-process count of the 
user who owns the process. (The scheduler resolution, 
t 3, is a sixtieth of a second on the VAX version, and 
one hundredth of a second on the Cray.) Typically, 
schedulers increase the priority by a constant. Intui- 
tively, one might view the difference between Share 
and typical schedulers as follows: 
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process, we need to penalize each of them to ensure 
that the user’s share is spread between them, and we 
do this by multiplying the priority increment by the 
active-process count. This is the crux of the Share 
mechanism for making long-term usage, over all re- 
sources that attract charges, affect the user’s response 
and rate of work. 

Although the model we have described may be ade- 
quate for implementations where process priorities 
have a large range of values, on the machines where 
we have implemented Share, process priorities are 
small integers and cannot be used directly. We need to 
normalize the share priorities into a range that is appro- 
priate for real process priorities. In addition, where the 
range in priority values is quite small, we need to en- 
sure that the normalization procedure does not allow a 
single very large Share priority value to reduce all 
other normalized priorities to 0. To avoid this, we de- 
fine a bound on the Share priority. This is calculated in 
the process-level scheduler as shown in Figure 3. K4 is 
determined by the largest priority available to the low- 
level scheduler. Note that the Share priority bound 
does, somewhat unfairly, favor very heavy users. They 
still suffer the effect of their slowly decaying large 
usage, however, and are still treated more severely 
than everyone else. On the other hand, it helps prevent 
marooning. 

Process Activation. At each scheduling event, Share up- 
dates the current user’s charges by the costs associated 
with the event and selects the lowest priority process to 
run. This aspect of Share is typical of CPU schedulers. 

Find greatest Share priority for normalization: 

max-priority = 0. 

For each process, 

if 

max-priority 
< priority PlOCBSS S priority-bound, 

then 
max-priority = prior3.tyProcesS. 

For each process, scale priority to appropriate range: 

if 

priority Qroceee 5 max-prlorlty. 

then 

normalized-priority,.,,,,, 
. 

= (K4 - 1) X 
prlor*typrocess 
max-priority' 

normalized-priority,.,,.,. = K4. 

FIGURE 3. Priority Normalization 

Multiple Processors 
Multiprocessor machines do not affect the implemen- 
tation provided the kernel still uses a single priority 
queue for processes. The only difference is that pro- 
cesses are selected to run from the front of the queue 
more often, and incur charges more frequently, than if 
only one processor were present. 

Efficiency 
The implementation shown in Figure 2 should only be 
seen as a model of the actual code. For efficiency, some 
of the calculations shown at the level of the process 
scheduler are actually precalculated elsewhere. 

Edge Effects 
In general, it is important to avoid edge effects on 
scheduler behavior. In particular, if a user enters the 
system with zero usage they could effectively consume 
100 percent of the resources, at least for one cycle of 
the user-level scheduler. Since this is a comparatively 
long time [a few seconds), this would be unacceptable. 
We now examine why this undue favoritism might oc- 
cur and how Share deals with the problem. 

First, we define the relative proportion of the ma- 
chine due to a user by virtue of the allocation of shares: 

machine-proportion-due,,,, 
shares,,,, 

= ~~~y"e-"sers ,-hares, . 

This defines the proportion of the machine due to a 
user in the short term. Now we can also predict the 
short-term future proportion of the machine that a user 
should get by virtue of their usage: 

near-futuredachine-proportion,,,, 
shares?,,,/usage,,,, 

= yc;Iye-“sers shares:/usage,. 

If everyone is getting their fair share, these two for- 
mulas will give the same value for each active user. 
Indeed, Share works to push these two formulas to the 
same value for each user. In the case where a user has 
zero usage (or near zero usage), we need to interfere to 
prevent that user from being unduly favored (while 
other users are ignored]. We do this by altering the 
usage value in the user-level scheduler as shown in 
Figure 4. We have set K5 to 2. 

System Processes. Processes that run in support of the 
operating system must be given all the resources they 
need. In effect, system processes are given a 100 per- 
cent share of the resources, although it is assumed they 
will not use it most of the time. Share is intended to 
arbitrate fairly between users, after the system has 
taken all the resources it needs. 

Marooning. It is possible for a user to achieve a very 
large usage during a relatively idle period. If new users 
then become active, the original user’s share becomes 
so small that they are unable to work effectively. This 
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FIGURE 4. Avoiding Edge Effects 

user’s processes are effectively marooned with insuffi- 
cient CPU allocation even to exit. Marooning is avoided 
by the combination of bounds on the normalized form 
of priority, the process priority decay rate, and the 
granularity of the process-level scheduler. 

HIERARCHICAL SHARE 
Although the simple version of Share we have de- 
scribed served well for several years, it was inadequate 
for a machine that is shared between organizations or 
independent groups of users. For instance, consider a 
situation where organizations need to share a machine 
not only between users, but also at the organizational 
level. Share as described above is fine for this situation 
provided we can make the following assumptions: 

(1) 

(2) 
(3) 

(4) 

The total allocation of shares for each organization 
is strictly maintained in the proportions that the 
machine split is made. For example, if a machine 
is to be split equally between two organizations, 
the total shares for each organization must be the 
same. 
The users in each organization are equally active. 
K 1 is acceptable at the organizational level and 
constant for all users. 
Costs for resources are consistent for all users, and 
the other parameters of Share, including K2, t 1, 
t 2, and t 3, are accepted for all users. 

Let us now consider how the simple Share is adjusted 
to account for each of these factors. 

Shares in a Hierarchical Share Scheduler 
It would be impractical to require that the total shares 
for each organization be maintained at a fixed value. 
This would mean the arrival of a new user would re- 
quire adjustments to the shares of all users in that orga- 
nization. This would be a serious problem that might 
rule out organizational sharing with the simple form of 
Share. 

So that each organization appears to be operating 
their own machine, we allow that users be allocated 
shares just as in the simple Share. We cannot, however, 
directly compare such shares across organizations. We 
need to convert them to a comparable measure. The 
approach we take is to calculate each user’s machine 
share, the proportion of the machine that their alloca- 

tion of shares make them eligible to receive. We start at 
the root of the Share hierarchy tree and convert the 
shares allocated to each child node into their machine 
share, using the following formula: 

m-share.,,, 
= m-share,,,,,t 

x cE1y' '"95 
sharesnode 

shares, + share,,,, 

This calculation is repeated recursively down the hier- 
archy tree until the m-s hare of each node has been 
calculated, and m-share is then used instead of 
shares is the user-level scheduler. 

Varying Levels of Activity 
It is not reasonable to assume that users are equally 
active at all times. This means that, as users log in and 
out, they alter the m-share value of all users in their 
scheduling group (and if they are the first user in their 
group to log in, or the last to log out, they alter the 
m-share of all users who descend from their grand- 
parent node in the hierarchy tree). In terms of the oper- 
ation of Share, this means that some m-share values 
will usually be recalculated at each log in or log out. 
This poses a small but acceptable overhead. 

Share acts fairly under full load, but a light load can 
distort it. Consider, for example, the situation depicted 
in Table I. This shows a case where there are two 
organizations A and B with an equal share of the re- 
sources, where organization A has one active user, Al, 
and organization B has two users, Bl with a large share 
and inactive, and BZ with a small share running a CPU- 
bound process. The effective share of the two active 
users, Al and BZ, differ by a factor of 10, and yet the 
scheduler should divide the resources equally between 
the two groups, A and B. 

TABLE 1. User Activity that Distorts Group Shalring 
j’ ‘s-‘,. ( %j_. < j_ ,.,a ~. .,‘. .&p/al-e Description of mer activity 

Organization A 
User Al 0.50 Active 

Organization 6 
User 61 0.45 Logged in but inactive 
User B2 0.05 CPU bound 
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First, we define the relative proportion of the ma- 
chine due to a group by virtue of its allocation of 
shares: 

machine-proportion-due,,,,, 

sharesgroup 
= ~;~;l-Vo'JPs shares, . 

Now we can also calculate the actual share of resources 
consumed by a group for the most recent scheduling 
period: 

actual-machine-proportion,,,,, 

chargesgroup 

If each group is getting its fair share, these two formulas 
give the same value for each active group. In the case 
described above, we need to interfere if group B [and 
hence user B2) is to get its fair share. This is done in 
the user-level scheduler by reducing the costs of re- 
sources consumed by a group that is getting less than a 
certain amount of its share (see Figure 5). This de- 
creases the usage for active users in the group and 
allows them to increase their share and the group’s 
share. This calculation applies only to the dynamic 
usage value: The long-term usage for the user incurs 
full costs, ~6 is set to allow a group’s allocated share to 
fall below its effective share by some small amount. We 
chose 10 percent. 

Differential Decay Rates for Usage 
We have shown that the simple Share used the same 
rate of decay for the usages of all users. It follows that 
users within an organization should have the same 
usage decay rate. We do not need to do this between 
organizations. This can be illustrated in terms of the 
simple Share system operating in the university context 
where it is deemed appropriate to a set a three-day 
half-life for usage in the case of a machine used by 
undergraduates, but for the research-support machine, 
an acceptable half-life value is 12 hours. When differ- 
ent organizations share a machine, the right to define 
different decay rates may be important. 

In practice, we have not dealt with this problem. 
There is a simple administrative solution if the organi- 
zations can agree to a constant decay rate within each 
organization and negotiate the organization machine 

Fw each group (descend hierarchy), 

it 
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share allocations to take this into account. An alternate, 
more complex approach, is a dynamic correction for 
differential decay rates by keeping two forms of usage: 
one for each user as we currently do, and another for 
each organization with a common decay rate applied to 
all organizational usage values. Then we could make a 
further adjustment to each group’s m-share value 
(and hence each user’s) to account for any imbalances 
in the group-level usage value. 

Other Parameters 
We have not allowed for variability per group or per 
user in any of these. 

EVALUATION OF SHARE 
Some parts of the design we have described were eval- 
uated [Z] before implementation in 1985. This evalua- 
tion with synthetic loads was mainly intended to guide 
the development of a computational model for the 
scheduler before it was put into active service on a 
heavily used machine. This preliminary work 
smoothed the introduction of the scheduler. 

Once Share had been put into service, we used two 
forms of evaluation. First, we used several monitoring 
tools to watch it in operation. These have also been 
useful for administration and users. They indicate 

l resource usage between groups: shows the effective 
share and actual resource consumption by group; 

l resource usage between users: shows the actual re- 
source consumption for every user; 

l effective share distribution: plots a graph of users versus 
normalized usages; a non-Poisson distribution prob- 
ably indicates problems, such as a class of users (not 
necessarily in the same group) that are consuming a 
disproportionately large amount of the resources; 

l resource event frequency: provides feedback on active 
resource consumptions; 

l long-term charges: provides details on the share of the 
resources between groups and users over a long time 
period. 

In addition, we have run synthetic tests with pure CPU 
bound processes, to check that Share preserves the 
proper relationships between users with different 
shares, usage, and number of processes. 

In view of the difficulties of the creation of valid 

actual-machine-proportion,,,,, < K6 X machine-proportion-duegzOUP, 

then, for each user in the group (descend hierarchy), 

chargesuse, = charge&,, X 
actual-machine-pxoportion,,,,, 

~6 X machine-proportion-due,ro,,' 
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simulation models and synthetic loads [4], we consider periods of reduced response. Although this facility is 
the users’ reactions to Share in real operation the most only necessary on rare but critical occasions,4 it is an 
important evaluation of the system. attractive benefit of Share. 

DESIGN GOALS 

Design Goal: That It Be Fair 

Design Goal: That It Should Deal Well with Peak 
Loads 

We aimed to achieve this goal in terms of a secondary 
goal: that users be allocated shares that defined their 
relative machine share and that users getting more 
than their machine share should be penalized with 
poorer response. On simple tests with synthetic jobs, 
we observed that Share met this design goal [Z]. More 
important, however, users deemed the scheduler to be 
treating them fairly. 

Even with the simple, nonhierarchical Share, we 
have observed a number of situations where Share has 
dealt with potentially disastrous situations to the satis- 
faction of most users. For example, in our student envi- 
ronment, we allocate shares to students on the basis of 
the relative machine share they should need. If a class 
is given an assignment that demands significantly more 
machine resources, only the students in that class will 
find the machine slow. With a conventional scheduler, 
everyone suffered in this situation. Share has proved 
useful for this problem in that the source of the prob- 
lem is patently obvious, as is the identity of the person 
responsible for creating it. 

In our design environment, one of the classic causes of 
a peak load is the deadline for an assignment. Because 
we stagger the deadlines for different classes, one class 
of students may try to work harder as the deadline 
approaches. In pre-Share days, everyone suffered, and 
the machine would grind to a halt. With Share, the 
individuals in the class that is working to the deadline 
are penalized as their usage grows. Meanwhile, other 
students get good response and are often unaware of 
the other class’s deadline. In effect, under heavy load, 
heavy users suffer most. 

A similar example, with the hierarchical Share sys- 
tem, involved a user who initiated a long running CPU- 
bound process. Share ensured that users in other 
groups were unaffected by the problem. 

Design Goal: That It Should Encourage Load 
Spreading 
The most direct observation of Share’s load-spreading 
effect is that users do give up when they get poor re- 
sponse, especially when it is bad relative to other users. 
We would like to report that our students now start 
their assignments early and work on them steadily: this 
unfortunately is not the case. Given that one class 
deadline cannot disrupt another, however, allows stu- 
dents to plan their work and enables them to predict 
that they will get reasonable response, if they work 
steadily. 

Design Goal: That It Be Understandable 
Figure I indicates the user’s view of Share. Our users 
appear to be able to appreciate this view, and interpret 
relatively poor response as an indication they have ex- 
ceeded their machine share. They also become alert to 
the relative costs of various processes they create since 
it is directly reflected in their relative response from 
the machine. 

Design Goal: That It Be Predictable 
Each user’s personal profile lists their effective machine 
share, that they quickly learn to interpret. Users speak 
of a certain machine share as being adequate to do one 
task, but not another. 

Design Goal: That It Should Give Interactive Users 
Reasonable Response 
We can ensure this goal by combining Share with a 
check at log-in time that only allows users to log in if 
they can get reasonable response. In practice, we have 
not utilized this facility unless there is a very large 
number of users (over 70 on the VAX). Those who have 
high usage do get poor response, and if the machine is 
heavily loaded, the poor response may well be intolera- 
ble for tasks such as using a screen editor. We view this 
as an inevitable consequence of Share being fair to 
users whose fair share is really very small. 

In general, Share does ensure good throughput for the 
small processes that typify interactive use. 

Design Goal: The Scheduler Should Accommodate 
Special Needs 
Share accommodates situations where brief periods of 
excellent response are guaranteed for individuals or 
groups of users. One simply allocates a relatively large 
number of shares to the relevant user’s (or group’s) 
account for the duration of the special needs. This is a 
simple procedure that the system administrator can set 
up to run at the required times. 

Design Goal: No Process Should Be Postponed 
Indefinitely 
Since Share allocates some resources to every process, 
this goal is also achieved. 

Design Goal: That It Should Be Inexpensive to Run 
Since most of the costly calculations are performed in- 
frequently (in the user-level scheduler), Share creates 
only a small overhead relative to the conventional 
scheduler. 

Clearly, this sort of activity disrupts other users as 
they have to share a smaller part of the machine than 
usual. In fact, we observe that the favored users may 
only make major demands of the machine for very 
brief periods. Typically, other users suffer only small 

THE ESSENTIAL SHARE 
Our description mirrors Share as we have implemented 
it. The aspect that is essential to Share is that it shares 

‘These include demonstrations of software to funding agencies and, in the 
teaching context, practical examinations. 
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resources fairly between users, rather than just pro- 
cesses. Other aspects can be altered within the Share 
framework. 

In particular, several parameters are defined by ad- 
ministrative decisions and need to be set according to 
the particular requirements of each machine. For ex- 
ample, we set the constant Kl to make usage decay 
quite slowly: Its half-life has ranged from a few hours to 
three days. It could equally be of the same order as the 
process priority decay rate. Since the function of usage 
is to ensure that process priorities reflect the total activ- 
ity of the user who owns them, it can do that equally 
well with a short half-life if that is what is required. To 
date, we have used Share in environments where a 
long-usage half-life has been regarded as fair. 

Other such parameters that can be altered include 
the various constants, the frequency with which the 
user level and process schedulers run, and the way 
charges are calculated. On the last of these, charges 
should be selected to reflect the administrator’s view of 
the costs of each resource. This may well change in 
light of monitoring information or with changes in the 
hardware configuration. 

Similarly, the time variance of charges could be al- 
tered. In our experience, it seems best to have fixed 
costs at particular times of day so that users can plan 
their work in terms of these. In other situations, it may 
be appropriate to take some other approach. Cost could 

be dynamically altered on the basis of load so that the 
machine would become more costly to use at peak 
times, whenever they occurred, or one could have 
fixed costs at all times. Such changes should be taken 
with care. For example, the suggestions that costs 
change dynamically may, at first glance, seem attrac- 
tive and sensible. Nevertheless, it violates the principle 
of predictability, a sacrifice that should not be taken 
lightly. 

CONCLUSION 
Users perceive the scheduler as fair in practice, and 
tend to blame poor response more on their past usage, 
rather than on system overloading. The strengths of 
Share are that it 

is fair to users and to groups, in that users cannot 
cheat the system, and groups of users are protected 
from each other; 
gives a good prediction of the response that a user 
might expect; 
gives meaningful feedback to users on the cost of 
various services; and 
helps spread load. 

Share has proved useful in practice, both in teaching 
and research contexts. Other contexts are possible, 
such as sharing access to a file server to prevent any 
one client from monopolizing the service. 

Appendix 

Below is sample output from some of the monitoring utilities. They illustrate some of the information 
available to users and system maintainers. The actual displays have been edited to give fictitious names to 
users and groups. 

Display from a Hierarchical Share System on a DEC-VAX 

Figures 6 and 7 have hash signs to represent resource consumption, and I to show aIlocated share. 

Group 
System 
other 
idle 
support 
tutor 
staff 
ma int 
office 
pgrad 
hons 
prw 
daemon 

1P 
Total => 

No. 
1 
1 
1 
1 
5 
6 
2 
2 
4 
4 
6 
1 
1 

35 

%Rate Wed Ott 14 16:48:08 1987 

1.0 # I 
0.0 #I I 
0.0 # I 
O.O# I I 

15.2 ###I#### I 
0.0 # I I 
0.0 I I 
0.0 # I I 

24.3 #######I#### I 
0.0 #I I 

57.8 #######I##################### I 
1.6 ## I I 
0.0 I I 

FIGURE 6. A Display of the Rate of Use by Groups on a VAX 
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idle 
Sarah 
dennis 
j oyce 
rebecca 
bob 
gv3 
anne 
talia 
plot 
john 
irene 
arthur 
1P 
linda 
jeannette 
piers 
tim 
gretchen 
ray 
Steve 
judy 
lina 
Susan 
ray 
daemon 
jason 
jans 
jant 
allan 
ian 
janet 
josef 
peter 

Shares: 0 
Shares: 10 
Shares: 10 
Shares: 10 
Shares: 100 
Shares: 10 
Shares: 10 
Shares: 10 
Shares: 10 
Shares: 10 
Shares: 100 
Shares: 10 
Shares: 50 
Shares: 3 
Shares: 10 
Shares: 200 
Shares: 100 
Shares: 100 
Shares: 50 
Shares: 100 
Shares: 50 
Shares: 50 
Shares: 200 
Shares: 50 
Shares: 100 
Shares: 12 
Shares: 50 
Shares: 50 
Shares: 50 
Shares: 50 
Shares: 50 
Shares: 50 
Shares: 50 
Shares: 50 

Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 
Share: 

0% 
0.875% 
0.984% 
0.309% 

3.94% 
0.984% 
0.984% 
0.875% 
0.984% 

7.87% 
3.09% 

0.875% 
1.18% 
2.36% 

0.875% 
3.54% 
3.09% 
3.09% 
1.18% 
3.09% 
4.37% 
3.94% 
3.54% 
3.94% 
3.09% 
9.45% 
3.94% 
3.94% 
3.94% 
3.94% 
3.94% 
3.94% 
3.94% 
3.94% 

E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-Share: 
E-Share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 
E-share: 

0% 
0% 
0 % 

0.0725% 
0.112% 
0.155% 
0.158% 
0.191% 
0.229% 
0.238% 
0.684% 

1.01% 
1.08% 
1.19% 
1.21% 
1.27% 
1.34% 
1.86% 
2.26% 
3.15% 
4.03% 
4.26% 
4.26% 
4.53% 
5.57% 
6.04% 
6.59% 
6.59% 
7.25% 
7.25% 
7.25% 
7.25% 
7.25% 
8.05% 

Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
Usage: 
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FIGURE 7. A Display of the Scheduling Information for Users on a VAX 
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