Code Profiling and
Benchmarking

What is Time? Kantianism

“[Kant] describes time as an a priori notion that, together with other a priori notions such as space, allows
us to comprehend sense experience.”

https://en.wikipedia.org/wiki/Philosophy_of space_and_time

Oh, Wrong Workshop...

What is Time? Shell Time

real/total/wall: the real time it took to run the program (according to the time on a clock on a physical
wall).

user: the time the computer spent running just your program, without including external factors such as
operating system startup times.

sys: the time spent within the program during system-related tasks such as memory allocation.

Profilers

Python has cProfile, memory_profiler, line_profiler
C++ has gprof

R has lineprof

They are all largely measuring the same things. But some have more or less features.

cProfile Example

python -m cProfile [-o output_file] [-s sort_order] (-m module | myscript.py)

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
26/5 0.000 0.000 0.051 0.010 <frozen importlib._bootstrap>:1002(_find_and_load)
3 .000 .000 .000 .000 <frozen importlib._ bootstrap>:1033(_handle_fromlist)
26 .000 .000 .000 .000 <frozen importlib._bootstrap>:112(release)
26 .000 .000 .000 .000 <frozen importlib._bootstrap>:152(__init__)
26 .000 .000 .000 .000 <frozen importlib. bootstrap>:156(__enter__)
26 .000 .000 .000 .000 <frozen importlib._bootstrap>:160(__exit__)
26 .000 .000 .000 .000 <frozen importlib._bootstrap>:166(_get _module_lock)
26 .000 .000 .000 .000 <frozen importlib._bootstrap>:185(ch)
36/6 .000 .000 .043 .007 <frozen importlib._bootstrap>:220(_call_with_frames_removed)
428 .000 .000 .000 .000 <frozen importlib._bootstrap>:231(_verbose_message)
1 .000 .000 .000 .000 <frozen importlib._bootstrap>:241(_requires_builtin_wrapper)
15 .000 .000 .000 .000 <frozen importlib._bootstrap>:35(_new_module)
26 .000 .000 .000 .000 <frozen importlib._bootstrap>:351(__init__)
39 .000 .000 .000 .000 <frozen importlib._bootstrap>:385(cached)
25 .000 .000 .000 .000 <frozen importlib._bootstrap>:398(parent)

0
0
0
0
0
0
0
0
0
0
0
0
0
0

(SRS B ISR S B S R S I S TSI S R S S
(SIS I IS T S S I S T S S R S T S I S S S
(SIS B S ISR S S BRSNS S TSI S R S]

What is Time? cProfile

ncalls: the number of calls.
tottime: the total time spent in the given function (and excluding time made in calls to sub-functions)
percall: is the quotient of tottime divided by ncalls

cumtim: is the cumulative time spent in this and all subfunctions (from invocation till exit). This figure is
accurate even for recursive functions.

percall: is the quotient of cumtime divided by primitive calls

From https://docs.python.org/3/library/profile.html

Other Profilers

memory_profiler

python -m memory_profiler script.py

line_profiler
kernprof -1 script.py

python -m script.py.lprof

Advice

Loops are slow!

e [fthereis a built-in function that can replace a loop, it is almost always faster.

Search for fast libraries.

e Some libraries allow for better CPU utilization and more efficient calculations.

e Numpy will utilize multiple CPU cores and does matrix mathematics quicker compared to python’s
lists.

e Numba can speed up Numpy in some circumstances, but might run slower in others.

Example Use

Diamond and MMseqs2 with Their Incremental Version

1400
Diamond
B Diamond Run on New Data
1200 A
MMseqs2
BN MMseqs2 Run on New Data
1000 - I Merge Previous and Current Data
Il Storing Results
n 800 A
©
c
[=]
(S}
& 600
400 A
200 A
0

Time 0 Time 1 Time 2 Time 3 Time 4

Benchmarking on Picotte

seff: “takes a jobid and reports on the efficiency of that job's cpu and memory utilization.”

sacct: “displays accounting data for all jobs and job steps in the Slurm job accounting log or Slurm
database”
https://slurm.schedmd.com

Extra Material:
https://proteusmaster.urcf.drexel.edu/urcfwiki/index.php/Slurm_Utility_Commands
https://proteusmaster.urcf.drexel.edu/urcfwiki/images/URCF_Workshop_Nov_2021.pdf

